• 제목/요약/키워드: Acceleration length

검색결과 294건 처리시간 0.025초

기계시스템의 공차에 의한 속도 및 가속도 오차의 해석 (Velocity and Acceleration Error Analysis of Planar Mechanism Due to Tolerances)

  • 이세정
    • 대한기계학회논문집
    • /
    • 제18권2호
    • /
    • pp.351-358
    • /
    • 1994
  • A probabilistic model and analysis methods to determine the means and variances of the velocity and acceleration in stochastically-defined planar pin jointed kinematic chains are presented. The presented model considers the effect of tolerances on link length and radial clearance and uncertainty of pin location as a net effect on the link's effective length. The determination of the mean values and variances of the output variables requires the calculation of sensitivities of secondary variables with respect to the random variables. It is shown that this computation is straightforward and can be accomplished by a conventional kinematic analysis package with minor modification. Thus, the concepts of tolerance and clearance have been captured by the model and analysis. The only input data are the nominal linkage model and statistical information. The "effective link length" model is shown to be applicable to both analytical solution and Monte Carlo simulation. The results from both methods are compared. This paper Ksolves the higher-order kinematic problems for the probabilistic design analysis of stochastically-defined mechanisms.echanisms.

불규칙 파랑 중 선체 동요 평가에 관한 연구 (A study on evaluation of ship motion in irregular waves)

  • 이창헌;최찬문;안장영;김석종;김병엽;시게히로 리츠오
    • 수산해양기술연구
    • /
    • 제51권4호
    • /
    • pp.504-511
    • /
    • 2015
  • In this paper, the results of evaluating the passenger comfort due to the standard deviation of acceleration in vertical and lateral direction regarding the ship response in irregular wave by ordinary strip method in regular wave and energy spectrum using linear superposition theory in order to evaluate the motion of experimental ship are as follows. According to the results of ship response, it was possible to find that, in order to reduce the motion of ship, a ship operating in bow sea was more stable than in quartering sea. In the results of analyzing the standard deviation of acceleration in vertical direction according to each component wave pattern, when there was a wave length of 56m and an average wave period of 6 sec, most of cases showed the peak value. And among them, the standard deviation was 0.35 which was the highest in head sea. And in case of lateral direction, the maximum value was shown in a wave length of 100m and an average wave period of 8 sec. And it was 0.16 in beam sea and ${\chi}=150^{\circ}$. In the evaluation of passenger comfort due to standard acceleration in vertical and lateral direction, it was 80% in head and bow sea. On the other hand, it was shown to be 15% in follow sea. Accordingly, when the expected wave height in a sea area where a training ship was intended to operate was known, it was possible to predict the routing of ship. And altering her course could reduce the passenger comfort by approximately 50%.

The Effects of Simulated Mild Leg Length Discrepancy on Gait Parameters and Trunk Acceleration

  • Jung, Soo-jung;An, Duk-hyun;Shin, Sun-shil
    • 한국전문물리치료학회지
    • /
    • 제25권4호
    • /
    • pp.9-18
    • /
    • 2018
  • Background: Leg length discrepancy (LLD) leads to many musculoskeletal disorders and affects daily activities such as walking. In the majority of the population, mild LLD is a common condition. Nevertheless, it is still controversy among researchers and clinicians on the effects of mild LLD during gait, and available studies have largely overlooked this issue. Objects: The purpose of the present study is to investigate the effects of mild LLD on the gait parameters and trunk acceleration. Methods: A total of 15 female and male participants with no evidence of LLD of >.5 ㎝ participated in the present study. All participants walked under the following two conditions: (1) The non-LLD condition, where the participants walked in shoes of the same heel height; (2) A mild LLD condition induced by wearing a 1.5 ㎝ higher heel on the right shoe. The GAITRite system and tri-axial accelerometer were used to measure gait parameters and trunk acceleration. To compare the variation of each variable, a paired t-test was performed. Results: Compared to the non-LLD condition, step time and swing phase were significantly increased in the mild LLD condition, while stance phase, single support phase, and double support phase significantly decreased in the short limb (p<.05). In the long limb of the mild LLD condition, single support phase significantly increased, while swing phase significantly decreased (p<.05). Furthermore, significant decrease in the gait velocity and cadence in the mild LLD condition were observed (p<.05). In the comparison between both limbs in the mild LLD condition, the step time and swing phase of the short limb significantly increased compared with the long limb, while step length, stance phase, and single support phase of the long limb significantly increased compared with the short limb (p<.05). Additionally, trunk acceleration of all directions (anterior-posterior, medial-lateral, vertical) significantly increased in the mild LLD condition (p<.05). Conclusion: The results of the present study demonstrate that mild LLD causes altered and asymmetrical gait patterns and affects the trunk, resulting in inefficient gait. Therefore, mild LLD should not be overlooked and requires adequate treatment.

Numerical Simulation of Cosmic-Ray Acceleration

  • JONES T. W.
    • 천문학회지
    • /
    • 제34권4호
    • /
    • pp.231-235
    • /
    • 2001
  • Cosmic-ray acceleration, although physically important in many astrophysical contexts, is difficult to incorporate into numerical models,. because it involves microphysics that is generally far from thermodynamic equilibrium, and also because the length and time scales for that physics typically range over many orders of magnitude, reflecting the huge range of particle rigidities that must be represented. The most common accelerator models are stochastic in nature and involve nonequilibrium plasma properties that are also often poorly understood. Still, nature clearly finds a way to produce simple, robust and almost scale-free energy distributions for the cosmic-rays. Their importance has inspired a number of approaches to examining the production and transport of cosmic-ray particles in numerical simulations. I offer here a brief comparison of some of the methods that have been introduced.

  • PDF

달리기 속도의 변화가 인체 충격 가속도와 생체역학적 변인에 미치는 영향 (Effects of Running Speed on Body Impact Acceleration and Biomechanical Variables)

  • Young-Seong Lee;Jae-Won Kang;Sang-Kyoon Park
    • 한국운동역학회지
    • /
    • 제34권2호
    • /
    • pp.81-92
    • /
    • 2024
  • Objective: The purpose of this study was to analyze the impact acceleration, shock attenuation and biomechanical variables at various running speed. Method: 20 subjects (height: 176.15 ± 0.63 cm, weight: 70.95 ± 9.77 kg, age: 27.00 ± 4.65 yrs.) participated in this study. The subjects ran at four different speeds (2.5 m/s, 3.0 m/s, 3.5 m/s, 4.0 m/s). Three-dimensional accelerometers were attached to the distal tibia, sternum and head. Gait parameters, biomechanical variables (lower extremity joint angle, moment, power and ground reaction force) and acceleration variables (impact acceleration, shock attenuation) were calculated during the stance phase of the running. Repeated measures ANOVA was used with an alpha level of .05. Results: In gait parameters, decreased stance time, increasing stride length and stride frequency with increasing running speed. And at swing time 2.5 m/s and 4.0 m/s was decreased compared to 3.0 m/s and 3.5 m/s. Biomechanical variables statistically increased with increasing running speed except knee joint ROM, maximum ankle dorsiflexion moment, and maximum hip flexion moment. In acceleration variables as the running speed increased (2.5 m/s to 4.0 m/s), the impact acceleration on the distal tibia increased by more than twice, while the sternum and head increased by approximately 1.1 and 1.2 times, respectively. And shock attenuation (tibia to head) increased as the running speed increased. Conclusion: When running speed increases, the magnitude and increasing rate of sternum and head acceleration are lower compared to the proximal tibia, while shock attenuation increases. This suggests that limiting trunk movement and increasing lower limb movement effectively reduce impact from increased shock. However, to fully understand the body's mechanism for reducing shock, further studies are needed with accelerometers attached to more segments to examine their relationship with kinematic variables.

초폭굉 모드 램 가속기의 연소실 길이에 따른 화염유지특성에 대한 수치적 연구 (A Numerical Study on Flame Stability with Extended Combustor in Superdetonative Mode Ram Accelerator)

  • 성근민;정인석
    • 한국연소학회지
    • /
    • 제12권4호
    • /
    • pp.31-38
    • /
    • 2007
  • An numerical study was conducted on superdetonative mode ram accelerator with length extended combustor. The computation condition was based on ISL's RAMAC30 II S225 experiment. For 50% length increased combustor, flame is not sustained. For the case of 60% and 70% increase, flame is successfully sustaind. But detonation wave is oscillating and acceleration is fluctuating. Extention of combustor is helpful for sustaing detonation wave but it may cause unstart.

  • PDF

초폭굉 모드 램 가속기의 연소실 길이에 따른 화염유지특성에 대한 수치적 연구 (A Numerical Study on Flame Stability with Extended Combustor in Superdetonative Mode Ram Accelerator)

  • 성근민;정인석
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2007년도 제34회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.126-129
    • /
    • 2007
  • An numerical study was conducted on superdetonative mode ram accelerator with extended combustor. The computation case was based on ISL's RAMAC30 II experiment. For 50% length increased combustor, flame is not sustained. For the case of 60% and 70% increase, flame is successfully sustaind. But detonation wave is oscillating and acceleration is fluctuating. Increasing of combustor length is helpful for sustaing detonation wave but it may cause unstart.

  • PDF

브러시 연삭 공구의 연삭 특성 분석 (Characterization of Brush Grinding System)

  • 백재용;유송민;신관수
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2000년도 추계학술대회논문집 - 한국공작기계학회
    • /
    • pp.309-313
    • /
    • 2000
  • In order to meet the industrial requirement, precision grinding with brush tool has been applied. To analyze the brush tool characteristics, several parameters including numbers of brush string installed in a single holder, depth of cut and brush length have been changed. Several data from various source were acquired using AE, acceleration and tool dynamometer during the process. Consistent results revealing certain trend with respect to each process condition were observed.

  • PDF

PARKER-JEANS INSTABILITY IN THE GALACTIC GASEOUS DISK. I. LINEAR STABILITY ANALYSIS AND TWO-DIMENSIONAL MHD SIMULATIONS

  • LEE S. M.;KIM JONGSOO;FRANCO J.;HONG S. S.
    • 천문학회지
    • /
    • 제37권4호
    • /
    • pp.249-255
    • /
    • 2004
  • Here we present a linear stability analysis and an MHD 2D model for the Parker-Jeans instability in the Galactic gaseous disk. The magnetic field is assumed parallel to a Galactic spiral arm, and the gaseous disk is modelled as a multi-component, magnetized, and isothermal gas layer. The model employs the observed vertical stratifications for the gas density and the gravitational acceleration in the Solar neighborhood, and the self-gravity of the gas is also included. By solving Poisson's equation for the gas density stratification, we determine the vertical acceleration due to self-gravity as a function of z. Subtracting it from the observed gravitational acceleration, we separate the total acceleration into self and external gravities. The linear stability analysis provides the corresponding dispersion relations. The time and length scales of the fastest growing mode of the Parker-Jeans instability are about 40 Myr and 3.3 kpc, respectively. In order to confirm the linear stability analysis, we have performed two-dimensional MHD simulations. These show that the Parker-Jeans instability under the self and external gravities evolves into a quasi-equilibrium state, creating condensations on the northern and southern sides of the plane, in an alternate manner.

농산물 수송 최적화 시스템 (II) -트레일러의 진동 분포 특성- (Optimum Transport Systems of Agricultural Products(II) -Vibration characteristics of the transporting traliler-)

  • 홍종호;이홍주
    • Journal of Biosystems Engineering
    • /
    • 제26권4호
    • /
    • pp.315-322
    • /
    • 2001
  • Agricultural products can be damaged due to the vibration of transporting trailer on the off-road. So, this study was conducted to identify the vibration characteristics of the agricultural products transporting trailer by measuring the vertical acceleration according to positions on the trailer loaded with agricultural products. The results of this study can be summarized as follows: 1. At non-operating state of engine, the larger vertical acceleration was occurred at rear side compared with front side in the case of 4.5Hz of vibration frequency. But, in the case of 53.5Hz of frequency, the maximum vertical acceleration at front side of trailer was higher than value at rear side. So, the maximum acceleration at front side of the trailer was increased with the increase in frequency. 2. At operating state of engine, the maximum vertical acceleration at front side of the trailer was increased with the increase in frequency. 2 At operating state of engine, the maximum vertical acceleration delivered through the hitch from the engine was occurred at front side of the trailer as $3.0\times10^{-3}m/s^2$, in the case of 8.75Hz of frequency. But, in the case of 102.5Hz of high frequency, the maximum vertical acceleration was occurred at rear side of the trailer. 3. When the power tiller loaded with pear of 325kg was travelling on the artificial uneven road of 3cm height, the maximum acceleration was occurred at rear side of the trailer as $4.7\times10^{-3}m/s^2$at 3.75Hz of frequency. But, that was occurred at diagonal of the trailer 43.5Hz and 91.25Hz, which meant that there was rolling and pitching on the trailer. 4. At operating state of engine, the mean acceleration of the trailer delivered through the hitch according to the increase in frequencies was showed the maximum value at range of 40-90Hz. At rear side of traiㅣer, the maximum value was occurred at about 40Hz, and that was reduced according to the increase in frequencies and diminished at about 100Hz. 5. When the power tiller loaded with pear of 32.5kg was travelling on the artificial uneven road of 3cm height, the mean acceleration by the increase in frequencies was showed lower level at rear side than front side of the trailer. This was opposite configuration to the Hinsch’s results tested with air-conditioned truck. This means that the shorter length of the trailer, the more effect of engine vibration is transferred to the front side of trailer.

  • PDF