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ABSTRACT

Cosmic-ray acceleration, although physically important in many astrophysical contexts, is difficult to incorporate
into numerical models, because it involves microphysics that is generally far from thermodynamic equilibrium,
and also because the length and time scales for that physics typically range over many orders of magnitude,
reflecting the huge range of particle rigidities that must be represented. The most common accelerator models are
stochastic in nature and involve nonequilibrium plasma properties that are also often poorly understood. Still,
nature clearly finds a way to produce simple, robust and almost scale-free energy distributions for the cosmic-rays.
Their importance has inspired a number of approaches to examining the production and transport of cosmic-ray
particles in numerical simulations. I offer here a brief comparison of some of the methods that have been introduced.
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I. Introduction

In a companion talk I discussed the roles that high
energy particles, or “cosmic-rays” (CRs), play.in as-
trophysics (Jones 2001) and how they are thought to
be accelerated. Such particles, which generally refer
to ions and electrons with energies well above the local
“thermal” energies, are ubiquitous. Ordinarily the CRs
appear to be distributed in momentum approximately
as power laws, so that they carry little or no informa-
tion about scales with them. The spectra can extend
over many orders of magnitude. CR existence can be
understood to be a natural consequence of the simple
facts that tenuous plasmas are common and that they
rarely come to a genuine thermodynamic equilibrium.
Binary, Coulomb collision rates are very slow compared
to other timescales, especially as one considers higher
energies. Most of us are already well acquainted with
this lack of “LTE” through the properties of atomic and
molecular emission lines. Partly because of this situa-
tion, dynamical couplings typically depend on “collec-
tive” plasma processes rather than Coulomb collisions.

In our context, the point is most easily seen through
comparisons of some of the basic interaction lengths
of collisionless plasmas. Roughly, we have for the
Coulomb scattering length for singly charged particles,
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where the last form expresses the temperature in units
of 10°K and n is the plasma number density. Especially
in hot, rarefied environments such as supernova rem-
nants, or intergalactic media this length becomes obvi-
ously too large to be locally relevant, and certainly too
long to produce fluid-like behaviors. By contrast the
“collective” lengths associated with electrostatic (e.g.,
two-stream) and low frequency magneto-ionic instabil-

ities are the ion inertial length or Debye length,
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and the gyro radius,

vy
ry = 6%3- ~ 1.6 x 109B—_:cm, (3)

where wy,; is the proton plasma frequency and B_g ex-
presses the magnetic field strength in uGauss. The first
form of rgy is general, whereas the last form applies to
thermal nonrelativistic protons. Associated timescales
for all three examples are found simply through division
by vy = 4/3kT/m ~ 1.6 x 107\/Ts cm/sec. Extensions
to greater speeds than v; are straightforward. These
scales actually represent lower bounds for randomiza-
tion of particle motions, especially for I; and r, at CR
energies, since the latter represent resonant scattering
interactions with waves, so typically involves multiple
scattering events.

Generally, “thermalization” through collective ef-
fects is good enough that the bulk population has dy-
namical behaviors that we associate with fluids. This
includes the formation of shocks where flow kinetic
energy is dissipated inside relatively thin layers. De-
tailed statistical balances, however, can be quite differ-
ent from LTE and often continue to evolve over times
long compared to those associated with bulk dissipa-
tion. These differences from LTE can be much more
than cosmetic, since substantial energy can be trans-
ferred to relatively small numbers of particles, espe-
cially once they become relativistic. Weak coupling at
high energies allows those CRs to diffuse and to stream
against the bulk flows, generating plasma turbulence,
transporting energy and and pressure, thus, modify-
ing the flows themselves. Those effects, in turn, alter
the transport properties of the CRs. An important ob-
jective is, then, to include these effects in numerical
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simulations.. That is quite a challenge, as it turns out,
both on account of the complexity and uncertainties in
the microphysics and also because the length and time
scales of that physics. Those are typically definable in
terms of 74 o p, which can range over many orders of
magnitude, extending upwards from close to the dissi-
pation scales.

Although CRs are occasionally modeled simply as
ordinary fluids with a softer equation of state than or-
dinary, nonrelativistic gas, that really misses many of
their most important features, and in particular their
weak coupling over a range of scales to the bulk plasma.
More realistic properties are difficult and/or computa-
tionally expensive to model, but they are so important
that a number of approaches have been developed to
include them. In the following sections I will briefly
outline some of the methods. The focus here is particle
acceleration. As emphasized in Jones 2001, collisionless
shocks are widely thought to be the most effective sites
for CR acceleration through the “diffusive shock ac-
celeration process” (DSA). Consequently, the following
discussion stresses treatments of CR transport around
those structures, although all of the methods can be
and are applied elsewhere. Through my own work I
am most familiar with approaches based on a Fokker-
Planck, Boltzmann equation, so will offer more detail
there.

II. Numerical Approaches

We can naturally divide the different approaches to
calculating CR acceleration at shocks into two concep-
tual groups. One kind of approach follows individual
particle motions and then constructs statistical mea-
sures of the population, such as the flux at a given
velocity or energy. The other approach works with
the probability distribution of the particles using ei-
ther the Boltzmann equation in some form or a math-
ematically equivalent formulation of the problem. The
former class generally makes no formal distinction be-
tween CRs and the rest of the particle population. The
latter, on the other hand, generally assumes the fluid
limit for the bulk of the population, then considers that
higher energy particles propagate with respect to the
bulk population in a diffusive manner. All methods
must deal with the likelihood that characteristic scat-
tering lengths will increase in some proportion to r,,
at least once the particles are superthermal. Each ap-
proach has its physical and numerical advantages as
well as some-significant limitations. To keep this in-
troductory discussion simple, I ignore many important
issues, such as obliquity of the ambient magnetic field.
The cited literature can be used as a guide to explore
these other matters:

(a) Particle Methods
i) Hybrid Plasma Simulations

Hybrid plasma simulations solve explicit equations
of motion for individual ions in the presence of locally
defined electric and magnetic fields. Electrons, whose
individual motions are much quicker, so harder to fol-
low individually, are treated as a light, charged fluid.
Ions respond only to relatively slow variations in the E
& M fields, so that is expected to be a very reasonable
approximation. The electric and magnetic fields are
evolved in the presence of these charge distributions
directly through Maxwell’s equations. The result is a
relatively complete, fully nonlinear and self-consistent
picture of the state of the plasma, including detailed
distributions of the ions in space, time and momentum,
plus properties of the plasma waves that are used to
describe their behaviors. To simulate shocks these cal-
culations typically inject a population of particles to re-
flect off a boundary and then stream back towards their
injection point. That behavior leads to plasma insta-
bilities and dissipation of the organized kinetic energy.
Except for a limited number of in situ measurements
of heliospheric shocks (e.g., Terasawa et al. 2001) hy-
brid simulations provide the most realistic picture we
have of the structures of collisionless shocks. Designed
more to study plasma dynamics than particle acceler-
ation, these methods have nonetheless been applied to
the latter and especially to issues associated with the
so-called “injection problem”. The very important is-
sue there is how and how many particles manage to
reach high enough energies at shocks so that they be-
have diffusively, as CRs are expected to do (e.g., Quest
1987; Giacalone et al 1997).

Hybrid simulations, because they are so detailed, are
computationally very expensive. Generally they are in-
tended to model behaviors over relatively short times
and within only a relatively modest number of nominal
shock thicknesses (typically of order several {; or ry de-
pending on shock geometry). Most commonly hybrid
simulations are carried out with at least one ignorable
coordinate (that is, in either 2D or 1D) in order to re-
duce costs. Recent studies, however, have emphasized
the importance of fully 3D particle orbits, especially
when there is an oblique large scale magnetic field (e.g.,
Giacalone & Ellison 2000). Prohibitive cost makes hy-
brid simulations impractical tools for examining the
acceleration of CRs to high energy, since that would
require very long simulations and very large spatial do-
mains. They are similarly not suitable for modeling
time evolution of astrophysically large structures.

il) Monte Carlo Simulations

This method streamlines the plasma simulation ap-
proach by assuming a predefined, universal scattering
law for the ions; i.e., by assuming the spectral form and
intensity of scattering waves. Only large scale mag-
netic fields are included explicitly. Fluctuating fields
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are not modeled, so effectively the plasma wave field
is assumed. Steady properties of the plasma are de-
termined after a large set of numerical experiments for
individual particles that establish the statistical prop-
erties of a population incident on a barrier, analogous
to full plasma simulations. The scattering centers are
physically supposed to be “attached” to the bulk flow
or at least to possess motions definable with respect to
the bulk flow. Thus, a self-consistent solution requires
an iterative sequence of experimental “configurations”
to define that frame of reference at each point (e.g., El-
lison & Eichler 1984). The simplifications speed up the
calculations over plasma simulations. Consequently,
they are able to track particles over a wide range of
momenta. Electrons remain difficult to track at low
momenta, but once electron momenta (rigidities) are
comparable to the ions it is straightforward to include
them as well. Monte Carlo methods are readily ap-
plied to multiple charge species, and have even been
used to explore the acceleration of charged dust grains
as a source of heavy ion CRs (e.g., Ellison et al. 1997)

Because of the iterative approach, these methods are
hard to apply to time dependent situations, and in com-
mon with plasma simulations, they have so far only
been applied directly to single, plane shock structures.
Finite time and geometry-related consequences are ef-
fectively included, however, in order to achieve conver-
gence, as well as to model real physics. In particular,
either finite acceleration times or finite shock sizes will
limit the maximum momentum to which CRs can be
accelerated. Similarly, to keep the CR pressure finite
in strong, highly modified shocks, there must be an
effective upper momentum cutoff to the CR spectrum.
Monte Carlo simulations achieve this property either by
a defined maximum momentum, or, usually, by apply-
ing a so-called “free escape boundary” placed some dis-
tance upstream of the shock. Since scattering lengths
generally increase with momentum, this effectively lim-
its the maximum momentum achievable. Comparisons
between suitably chosen plane Monte Carlo shocks and
spherical shocks computed by a Boltzmann equation
method have shown good agreement (Ellison et al.
2000).

Like plasma simulations, Monte Carlo schemes make
no distinction between thermal and nonthermal parti-
cles. In that sense they model CR injection naturally as
“thermal leakage”. On the other hand, they generally
apply a simple scattering law over the entire momen-
tum range (typically as a power law I, o p?), inde-
pendent of time or position. Nonlinear analytic models
of collisionless shock formation suggest that resonant
particle trapping in postshock wave turbulence can be
very effective for particle speeds up to several times the
postshock flow speed, then rather abruptly diminish for
higher speeds (Malkov 1998). Such differences will in-
fluence significantly the net injection rate, and espe-
cially its behavior as the shock evolves or in the event
that the large-scale ambient magnetic field is oblique.

(b) Boltzmann Equation-based Methods

The alternate conceptual approach usually works
with the distribution function, f(p,z,f), for each par-
ticle species, usually beginning from the collisionless
Boltzmann, or Vlasov equation. A full treatment of
all particle momenta in this way would be impracti-
cal for all the reasons suggested above regarding other
methods. So, here, one generally separates the par-
ticles of a given species into low momentum, “bulk”
particles and high momentum CRs. The bulk particles
are presumed to be thermalized and strongly coupled,
so that they can be treated by conventional continuum
gas dynamics or magnetogasdynamics. The CRs are
presumed to be sufficiently strongly scattered by local
wave turbulence that they are approximately isotropic
with respect to the wave motions, but weakly enough
coupled that they diffuse with respect to the bulk flow
in response to density gradients in f. The resulting
formalism for CRs is a Fokker-Planck equation (equa-
tion 6 in Jones 2001) that was first derived heuristi-
cally (e.g., Parker 1965) and subsequently more for-
mally (e.g., Skilling 1975). This equation is of a form
commonly called a “diffusion-convection equation” or
“DCE” for short. There are several variants of the ap-
proach, as outlined below.

As with the particle methods, Boltzmann equation
methods have both strengths and weaknesses. One of
the principal strengths of this approach is that it can
be applied pretty generally, at least in concept, since
the formalism lends itself to any number of physical di-
mensions as well as time dependent treatments. The
formalism is also adaptable to both analytic and nu-
merical methods. Powerful and robust methods are
available for both. On the other hand, these meth-
ods are still computationally expensive, especially when
more than one spatial dimension is included, so numer-
ical applications have been restricted to date, and an-
alytic calculations, once they include nonlinear effects,
quickly become very sophisticated. The separation of
particles into bulk and CR populations is not clean,
and treatments of injection intended to bridge the gap
are still in their formative stages (see, e.g., Gieseler et
al. 2000; Kang 2001). Similarly, while these methods
allow self-consistent treatment of the scattering wave
turbulence, and its evolution in space, wave-number
and time, those behaviors are rarely included, since key
properties are not well understood, and they add sig-
nificant computational complexity and cost. In prac-
tice, then, the diffusion coeflicient has generally been
assumed a priori (but, see, e.g., Bell 1978, Jones 1993;
Malkov et al. 2001).

i) Application of the DCE to DSA

The most straightforward approach in this paradigm
is direct solution of the DCE. At shocks, the momen-
tum diffusion term is usually ignored as being small.
The spatial diffusion coefficient, s, really is a tensor
with respect to the magnetic field direction; in plane



S234 JONES

shocks, it can be treated as a scalar corresponding to
diffusion along the shock normal.

In numerical treatments several details are impor-
tant to understand in order to obtain reliable solu-
tions. First, is that the DCE applies only outside the
dissipative shock structure. In fact, the formalism de-
scribes DSA physics on account of the fact that CRs
cross shocks uninhibited. Correct solutions require one
to match solutions across the shock, in particular to
make the distribution f continuous there. Analytically,
that is straightforward and has been even applied in
semi-analytic computational schemes (e.g., Berezhko
et al. 1995). However, this is a problem on a dis-
crete grid where the shock has a finite thickness, Az,
typically several zones across. The DCE is solved ev-
erywhere, including the interior of the (unphysical) nu-
merical shock. The key is to minimize the error in
Af /0t caused by this fact. The dominant error comes
from adiabatic compression across the numerical shock
structure, which gives a contribution to df /dt as

folmfg o Yy,
351npv: U= 3V u. (4)

Physically, f should not change across the shock, 0

this should integrate to (—¢f/3)Au. But, owing to the
finite numerical shock thickness and an upstream gradi-
ent 0f/0z ~ f/z4, where 4 = k/us, the distribution
function change across the shock structure will be of
order Af ~ fAzs/x4. This adds an extra term giving
a fractional error,

Af gBuls,
f err~3us Zq ’
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An accurate solution requires that |Af/ florr << 1, and
that, in turn requires a numerical grid fine enough that
Azgfzg << 1. .

This constraint applies at all CR momenta, and,
hence all r,. Since z4 o< K 77y, (See, e.g., Jones
2001), this can be a serious problem. In particular, &
can cover many orders of magnitude when one tries to
model CR momenta ranging from just superthermal to

. ultrarelativistic.

There have been at least two serious attempts to
deal with the enormous span of length and time scales
just described. The most direct is the semi-analytical
method of Berezhko and collaborators (Berezhko et al.
1995). They rescale the physical lengths for each mo-
mentum in terms of the diffusion length, x4, then in-
tegrate the DCE on both sides of a shock, applying
the necessary matching conditions at the shock itself.
Using a simplified gasdynamics they have effectively
used this approach to study CR acceleration at spher-
ical blast waves. The method does require a priori
models for the diffusion, but otherwise is fully time de-
pendent. The alternative approach is adaptive mesh
refinement (AMR). Our group has been developing an
AMR finite difference code that zooms on multiple lev-
els around shocks in order to handle the same issues

(Kang et al. 2001; Kang 2001). So far we applied it
only to individual plane shocks, but we intend to apply
it to more complex systems, such as spherical SNRs
with multiple shocks.

i) Numerical Schemes

The most straightforward Fokker-Planck based sim-
ulations are based on finite difference codes. Computa-
tionally the bulk flow is generally treated by one of the
standard schemes for ideal gasdynamics or magnetogas-
dynamics based on their hyperbolic form. The DCE is
not, hyperbolic, however, since it contains a diffusive or
parabolic term, so cannot be solved with those meth-
ods alone. The parabolic term can be handled effec-
tively by explicit or implicit schemes. The constraint in
equation 5, combined with the standard CFL condition
on solution of hyperbolic equations means that an ex-
plicit diffusion timestep, At, << At,, where Aty is the
characteristic gasdynamical time step. Thus, explicit
approaches to this problem require multiple diffusion
time steps in each gasdynamical step; i.e., “subcycling”
(e.g., Jun et al. 1994). An alternative semi-implicit
method is the Crank-Nicholson scheme. It avoids the
use of subcycles, and gives comparable solutions to the
explicit method (e.g., Falle & Giddings 1987; Kang &
Jones 1991).

The need to follow evolution of f(p,z,t) in an extra
dimension (momentum) often makes the DCE several
times more computationally expensive as gasdynamics
or magnetogasdynamics in a given calculation. One
must compute advection of particles in this dimension.
The corresponding adiabatic compression term (equa-
tion 4) is as important to DSA as the diffusion term
in the DCE. It is the only means by which particles
can increase their energy when there is no momentum
diffusion. The term depends on ¢ = —91n f/81np, so
an accurate solution to the DCE at a given momentum
depends on good numerical estimates for this slope. In
a finite difference approach this generally means that
one must use at least moderate resolution in momen-
tum space, making this a major consideration. Two
approaches have been introduced to cut this computa-
tional cost factor. Both attempt to reduce the required
resolution in momentum by providing ¢ or equivalent
information.

The first and most commonly applied method to
economize on the DCE was the so-called “two fluid”
method (e.g., Drury & Volk 1981; Jones et al. 1994).
That method replaces the DCE with its energy mo-
ment equation. One still needs an effective g, which,
in this case is supplied by the closure relationship
P, = (v, — 1)E,, where P, and E, are the CR pres-
sure and energy densities respectively, while v, is the
adiabatic index for the CR ’gas’. If f(p) is a pure pow-
erlaw, one can easily show that v, = ¢/3. Two fluid
methods have been applied to both analytic and numer-
ical treatments of CR acceleration and have provided
a number of important insights. Their big weakness is
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that ¢ and . are solutions to the problem, so gener-
ally cannot be assumed e priori. This is a particular
problem when g — 4 (v, = 4/3), since solutions can re-
sult with unrealistically large CR pressures. The most
controversial example may be a steady state analytical
solution for a CR modified shock in which P, = 0 up-
stream, but P, # 0 downstream even in the absence of
injection (Drury & V&lk 1981). That is an obviously
pathological solution that could not be reached in any
time dependent treatment, but it illustrates the issue.

A second approach we introduced divides the mo-
mentum space into broad, but finite bins, then inte-
grates the DCE or its moments across those bins (Jun
& Jones 1999; Jones et al. 1999; Miniati 2001). By
assuming some simple sub-bin model for f(p), most
conveniently a piecewise powerlaw, fluxes between mo-
mentum bins can be computed, just as for finite volume
gasdynamic methods. By requiring continuity and fol-
lowing multiple moments of the DCE one can obtain
self-consistent solutions for ¢{p) while still reducing the
needed resolution in momentum by a large factor over
traditional methods. This approach has good potential
as a method that can be applied in complex, 2D and
3D flows. So far this method has been applied only
to test-particle simulations of that kind, but there is
no fundamental reason it cannot be extended to sim-
ulations in which CR dynamical feedback is included.
The issue there comes back to obtaining fine spatial and
time resolution required to simulate shock modification
properly.

Finally I mention briefly an alternate approach that
is conceptually related to the Boltzmann equation meth-
ods, but is operationally more like some particle meth-
ods. This is the use of stochastic differential equations
to follow the evolution of the distribution function, f.
From Liouville’s theorem we know we can evolve f sim-
ply by following the trajectory of an element of phase
space over time. When the evolution is deterministic
one computes that trajectory with ordinary differential
equations of motion. In the presence of diffusion, that
motion takes on a stochastic behavior that can be mod-
eled by conducting numerical experiments for the tra-
jectories analogous to Monte Carlo particle methods.
Formally this is equivalent to the Boltzmann equation
method and its applicability to CR acceleration has
been demonstrated (Achterberg & Kriills; Marcowith
& Kirk 1999). It is yet to be applied to practical as-
trophysical contexts, but we can assume that is forth-
coming very soon.

ITII. Conclusion

Simulating CR acceleration and transport is chal-
lenging for both technical and physical reasons. It is
also very important to manage, since CRs are ubiqui-
tous and very probably play central roles in the dynam-
ics and energy budgets of many environments. CRs also
provide unique signatures of the physics in those envi-
ronments, if we can only learn to interpret them. Sub-

stantial progress has taken place in accomplishing that
task, although we still lack numerical methods that are
robust and economical enough to apply broadly. That
time may come soon. however.

ACKNOWLEDGEMENTS

I am grateful to the organizers of this excellent work-
shop for their invitation to participate and to their gen-
erous hospitality during our visit to Pusan. This work
was supported in part by NASA grant NAG5-10774,
by NSF grant AST00-71167, and by the University of
Minnesota Supercomputing Institute.

REFERENCES

Achterberg, A. & Kriills, W. M. 1992, A&A, 265, L13
Bell, A. R. 1978, MNRAS, 182, 147

Berezhko E. G., Ksenofontov, L. T. & Yelshin, V. K. 1995,
Nuclear Phys. B., 394, 171

Drury, L. O’C. 1983, Rep. Prog. Phys., 46, 973
Drury, L. O’C. & Vélk 1981, ApJ, 248, 344

Ellison, D. C., Berezhko, E. G. & Baring, M. G. 2000, ApJ,
540, 292

Ellison, D. C., Drury, L. O’C. & Meyer, J.-P. 1997, ApJ.,
487, 197

Ellison, D. C. & Eichler, D. 1984, Api., 286, 691

Falle, S. A. E. G. & Giddings, J. R. 1987, MNRAS, 225,
399

Gieseler, U. D. J., Jones, T. W. & Kang, H. 2000, A&A,
364, 911

Jones, T. W., 1993, ApJS, 90, 969
Jones, T. W., Ryu, D. & Engel, A. 1999, ApJ, 512, 105
Jones, T. W. 2001 (these proceedings)

Jun, B.-I., Clarke, D. A. & Norman, M. L. 1994, ApJ, 429,
748

Jun, B.-I. & Jones, T. W. 1999, ApJ, 511, 774
Kang, H. 2001 (these proceedings)
Kang, H. & Jones, T. W. 1991, MNRAS, 249, 439

Kang, H., Jones, T. W., LeVeque, R. J. & Shyue, K. M.
92001, ApJ, 550, 737

Kirk, J. G., Guthmann, A. W., Gallant, Y. A. & Achter-
berg, A. 2000, ApJ, 542, 235

Malkov, M. A., 1997a, ApJ., 485, 638
Malkov, M. A., 1997b, ApJ., 491, 584
Malkov, M. A. 1998, Phys Rev. E., 58, 4911

Malkov, M. A., Diamond, P. H. & Vélk, H. J. 2000, ApJ,
533

Marcowith A. & Kirk, J. G. 1999, A&A, 347, 391
Miniati, F. 2001, Comm. Comp. Phys, (in press)
Parker, E. N. 1965, Planet. Space Sci., 13, 9

Quest, K. B. 1988, J. Geophys. Res., 93, 9649

Skilling, 1975, MNRAS, 172, 557 - ,
Terasawa, T. et al. 2001, 26th ICRC (Hamburg), 6, 528.



