• Title/Summary/Keyword: Acceleration control

Search Result 1,472, Processing Time 0.033 seconds

Acceleration Feedforward Control in Active Magnetic Bearing System Subject to Base Motion by Filtered-x LMS Algorithm (베이스 가진을 받는 능동자기베어링 시스템에서 Filtered-x LMS 알고리듬을 이용한 가속도 앞먹임 제어)

  • Kang, Min-Sig
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.10
    • /
    • pp.1712-1719
    • /
    • 2003
  • This paper concerns on application of active magnetic bearing(AMB) system to levitate the elevation axis of an electro-optical sight mounted on moving vehicles. In such a system, it is desirable to retain the elevation axis within the predetermined air-gap while the vehicle is moving. An optimal base acceleration feedforward control is proposed to reduce the base motion response. In the consideration of the uncertainty of the system model, a filtered-x least-mean-square(FXLMS) algorithm is used to estimate the frequency response function of the feedforward control which cancels base motions. The frequency response function is fitted to an optimal feedforward control. Experimental results demonstrate that the proposed control reduces the air-gap deviation to 27.7% that by feedback control alone.

Active Vibration Control of Washing Machine by Acceleration Feedback Controller (가속도 피이드백 제어기를 이용한 세탁기의 능동진동제어)

  • Kim, Seung-Ki;Kwak, Moon K.;Yang, Dong-Ho
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.28-31
    • /
    • 2014
  • This paper is concerned with the active vibration control of washing machine. To this end, a new control algorithm utilizing an acceleration signal as a sensor signal is newly developed based on the principle of a dynamic absorber. The resulting control algorithm was implemented digitally on the DSP board. The accelerometer and the active linear actuator were used as sensor and actuator for the active vibration control of washing machine. Experimental results show that the proposed control algorithm can be effectively used for a controller which uses an accelerometer.

  • PDF

Precise position control with a low cost BLDCM drive (저가형 BLDCM 구동장치를 이용한 정밀위치제어)

  • 강석주;김준석;설승기;김덕근
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.44 no.4
    • /
    • pp.447-452
    • /
    • 1995
  • In this paper a simple method of a position control for brushless DC motor is presented. For precise position control, a high performance torque controller is needed and a novel current control method is proposed. The current controller detects the uncommutating mode current for every 60.deg. (elec. angle) and controls it with PI controller. The current control loop includes the feedforward of back EMF and the feedforward of the neutral voltage between the neutral point of the inverter and the neutral point of the machine. In the position control, the acceleration pattern is calculated from the position reference. Then the speed trajectory is calculated from the acceleration pattern. The experimental results are presented to verify the proposed methods.

  • PDF

The effects of target and missile dynamics on the optimal coriolis acceleration compensation (미사일 및 표적 운동을 고려한 시선지령유도에서의 코리올리 가속도 보상)

  • 류동영;탁민제;엄태윤;송택렬
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10a
    • /
    • pp.596-600
    • /
    • 1992
  • In CLOS guidance, feedback compensation of the Coriolis acceleration is used to reduce miss distance. This paper presents the effects of the bandwidth of target and missile on the optimal Coriolis acceleration compensation. A state space formulation of CLOS guidance is used to implement CLOS guidance in feedback form. And the LQR control method is applied to find the optimal feedback gain. From the analysis of the Riccati equations of the optimal control, the following facts are observed: When the target is agile, the optimal gain is reduced, since the compensation becomes ineffective. The missile bandwidth also affects the Coriolis accleration compensation. Narrower missile requires more compensation for the Coriolis acceleration.

  • PDF

Performance Analysis of the GPS Receiver under High Acceleration and Jerk Environments

  • Kwon, Byung-Moon;Moon, Ji-Hyeon;Choi, Hyung-Don
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.2
    • /
    • pp.279-283
    • /
    • 2006
  • The GPS receiver developed by KARI for the satellite launch vehicle should operate under severe dynamic environments such as high acceleration and jerk. Several terrestrial tests including the outdoor centrifuge test are planed in order to verify performances of the GPS receiver before flight. This paper deals with preliminary test results of the GPS receiver using a GPS signal generator before the centrifuge test that is a performance test of the GPS receiver using live GPS satellite signals. Test methods of the GPS receiver for the satellite launch vehicle under high centripetal acceleration and jerk utilizing a GPS signal generator are described. The simulation results are also analyzed in this paper.

  • PDF

An Acceleration Control Type of DC Servo-motor for Stiffness Improving (견실성 향상을 위한 직류서어보모터의 가속도제어)

  • 장기효;홍창희
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.15 no.3
    • /
    • pp.213-220
    • /
    • 1990
  • DC servo motor has been often used as the position control system, because the performance is excellent on the velocity and position control system. When the unknow disturbance and accessible load torque are imposed on the position control of DC servo motor, this system has the steady and/or transient state error. In this paper, a new method which has high stiffness for reducing the error is proposed. This error will be reduced by acceleration control. The effectiveness of the acceleration control is confirmed by using computer simulation.

  • PDF

Analysis of Acceleration Bounds and Mobility for Multiple Robot Systems Based on Null Space Analysis Method (영 공간 분해 방법을 이용한 다중 협동로봇의 모빌리티와 가속도 조작성 해석)

  • Lee Fill-Youb;Jun Bong-Huan;Lee Ji-Hong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.5
    • /
    • pp.497-504
    • /
    • 2006
  • This paper presents a new technique that derives the dynamic acceleration bounds of multiple cooperating robot systems from given individual torque limits of robots. A set of linear algebraic homogeneous equation is derived from the dynamic equations of multiple robots with friction contacts. The mobility of the robot system is analyzed by the decomposition of the null space of the linear algebraic equation. The acceleration bounds of multiple robot systems are obtained from the joint torque constraints of robots by the medium of the decomposed null space. As the joint constraints of the robots are given in the infinite norm sense, the resultant acceleration bounds of the systems are described as polytopes. Several case studies are presented to validate the proposed method in this paper.

Development of Throttle and Brake Controller for Autonomous Vehicle Simulation Environment (자율주행 시뮬레이션 환경을 위한 차량 구동 및 제동 제어기 개발)

  • Kwak, Jisub;Yi, Kyongsu
    • Journal of Auto-vehicle Safety Association
    • /
    • v.14 no.1
    • /
    • pp.39-44
    • /
    • 2022
  • This paper presents a development of throttle and brake controller for autonomous vehicle simulation environment. Most of 3D simulator control autonomous vehicle by throttle and brake command. Therefore additional longitudinal controller is required to calculate pedal input from desired acceleration. The controller consists of two parts, feedback controller and feedforward controller. The feedback controller is designed to compensate error between the actual acceleration and desired acceleration calculated from autonomous driving algorithm. The feedforward controller is designed for fast response and the output is determined by the actual vehicle speed and desired acceleration. To verify the performance of the controller, simulations were conducted for various scenarios, and it was confirmed that the controller can successfully follow the target acceleration.

Unrestricted Measurement Method of Three-dimensional Walking Distance Utilizing Body Acceleration and Terrestrial Magnetism

  • Inooka, Hikaru;Kim, HiSik
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.94.5-94
    • /
    • 2001
  • Unrestricted measurement method of three-dimensional walking distance utilizing body acceleration and terrestrial magnetism is discussed. The three-dimensional walking distance is derived by the integration of the three dimensional acceleration of foot during swing phase. Since the sensor system attached on the foot rotates during swing phase, the acceleration data measured on the foot include acceleration of gravity which causes inaccurate calculation of the velocity and the distance. Three gyros are used to compensate the rotation of the sensor system. Moreover, one geomagnetic sensor is employed to derive the heading direction of the subject Healthy volunteers performed ...

  • PDF

Analysis on Stable Grasping based on Three-dimensional Acceleration Convex Polytope for Multi-fingered Robot (3차원 Acceleration Convex Polytope를 기반으로 한 로봇 손의 안정한 파지 분석)

  • Jang, Myeong-Eon;Lee, Ji-Hong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.1
    • /
    • pp.99-104
    • /
    • 2009
  • This article describes the analysis of stable grasping for multi-fingered robot. An analysis method of stable grasping, which is based on the three-dimensional acceleration convex polytope, is proposed. This method is derived from combining dynamic equations governing object motion and robot motion, force relationship and acceleration relationship between robot fingers and object's gravity center through contact condition, and constraint equations for satisfying no-slip conditions at every contact points. After mapping no-slip condition to torque space, we derived intersected region of given torque bounds and the mapped region in torque space so that the intersected region in torque space guarantees no excessive torque as well as no-slip at the contact points. The intersected region in torque space is mapped to an acceleration convex polytope corresponding to the maximum acceleration boundaries which can be exerted by the robot fingers under the given individual bounds of each joints torque and without causing slip at the contacts. As will be shown through the analysis and examples, the stable grasping depends on the joint driving torque limits, the posture and the mass of robot fingers, the configuration and the mass of an object, the grasp position, the friction coefficients between the object surface and finger end-effectors.