• 제목/요약/키워드: Acceleration Vector

검색결과 149건 처리시간 0.024초

가속도 전향보상을 이용한 유도전동기의 속도제어 (Speed Control of an Induction Motor using Acceleration Feedforward Compensation)

  • 김상훈;이재왕
    • 산업기술연구
    • /
    • 제20권B호
    • /
    • pp.175-182
    • /
    • 2000
  • In this paper, a novel speed control strategy using an acceleration feedforward compensation by the estimation of the system inertia is proposed. With the proposed method, the enhanced speed control performance can be achieved and the speed response against the disturbance torque can be improved for the vector-controller induction motor drive systems in which the bandwidth of the speed controller cannot be made large enough. The experimental results confirm the validity of the proposed strategy.

  • PDF

서포트벡터 회귀를 이용한 실시간 제품표면거칠기 예측 (Real-Time Prediction for Product Surface Roughness by Support Vector Regression)

  • 최수진;이동주
    • 산업경영시스템학회지
    • /
    • 제44권3호
    • /
    • pp.117-124
    • /
    • 2021
  • The development of IOT technology and artificial intelligence technology is promoting the smartization of manufacturing system. In this study, data extracted from acceleration sensor and current sensor were obtained through experiments in the cutting process of SKD11, which is widely used as a material for special mold steel, and the amount of tool wear and product surface roughness were measured. SVR (Support Vector Regression) is applied to predict the roughness of the product surface in real time using the obtained data. SVR, a machine learning technique, is widely used for linear and non-linear prediction using the concept of kernel. In particular, by applying GSVQR (Generalized Support Vector Quantile Regression), overestimation, underestimation, and neutral estimation of product surface roughness are performed and compared. Furthermore, surface roughness is predicted using the linear kernel and the RBF kernel. In terms of accuracy, the results of the RBF kernel are better than those of the linear kernel. Since it is difficult to predict the amount of tool wear in real time, the product surface roughness is predicted with acceleration and current data excluding the amount of tool wear. In terms of accuracy, the results of excluding the amount of tool wear were not significantly different from those including the amount of tool wear.

압력 구배-가속도 관계를 이용한 링형 다중모드 벡터 하이드로폰에서의 도래각 추정 (Direction-of-Arrival Estimation for the Ring-Type Multimode Vector Hydrophone based on the Pressure Gradient-Acceleration Relationship)

  • 김완진;김우식;배호석;조치영;서희선;최상문
    • 한국음향학회지
    • /
    • 제34권1호
    • /
    • pp.66-74
    • /
    • 2015
  • 수중에서 압력의 크기만을 측정할 수 있는 기존 하이드로폰의 한계를 극복하기 위해, 음압뿐만 아니라 음원의 방향을 측정할 수 있는 다양한 종류의 벡터 하이드로폰이 개발되고 있다. 본 논문에서는 다양한 종류의 벡터 하이드로폰 중 4개의 분할된 전극을 가지는 링형 다중모드 벡터 하이드로폰에서 압력 구배-가속도 관계를 이용하여 도래각을 추정할 수 있는 방법을 제안하였으며, 시뮬레이션과 수조 시험을 통해 제안된 도래각 추정 방법의 성능을 검증하였다. 제안된 방법은 다중 주파수 환경에서도 동작이 가능하며, 연산량이 작은 이점이 있으므로 관련 분야에서 다양하게 활용될 수 있을 것으로 기대된다.

발파진동 예측방법에 관한 연구 (A Study on the Prediction Method of Blasting Vibration)

  • 이연수
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2006년도 추계학술대회논문집
    • /
    • pp.361-365
    • /
    • 2006
  • In order to predict method of blasting vibration in ground and it's resident located around blasting field in urban area, blasting vibration characteristics were measured the vibration velocity(cm/sec), vibration acceleration($cm/sec^2$), vibration acceleration level(dB) and vibration level(dB(V)). The charged powder were used to 1.25kg and measuring sites were 25 points front 4m to 90m at the ground. The correlation of vibration velocity, vibration acceleration, vibration acceleration level and vibration level by square root scaled distance and cube root scaled distance were investigated. The correlation of PPV(peak particle velocity) velocity by SRSD(square root scaled distance) and CRSD(cube root scaled distance) was 0.85 and 0.86 and the correlation of PVS(peak vector sum) velocity by SRSD and CRSD was 0.82. Also vibration acceleration, vibration acceleration level and vibration level by SRSD and CRSD was 0.61, 0.62 and 0.82, respectively. As results, the vibration velocity and vibration level(dB(V)) was showed good correlation, but the vibration acceleration and vibration acceleration level was not showed good correlation.

  • PDF

평균속도 개념을 적용한 상태공간에서의 과도동적응답 해석 (A Transient Dynamic Response Analysis in the State-Space Applying the Average Velocity)

  • 이안성;김병옥;김영철;김영춘
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2003년도 추계학술대회논문집
    • /
    • pp.465-470
    • /
    • 2003
  • In this study, the state-space Newmark method based on average velocity is presented to analyse the transient dynamic response for general dynamic system. The conventional Newmark method based on average acceleration cannot he directly to the first-order state-space differential equations introducing the state-space vector. To overcome this problem, the time-step integration algorithm, based on average velocity concept, suitable for the first-order state-space differential equations is proposed In results, the proposed method has %he numerical stability and order of accuracy, which is proved analytically, equal to those of the conventional Newmark method based on average acceleration. Also, the formulation for numerical solution is very simple and the calculation time Is nearly equal to that of the conventional Newmark method based on average acceleration in spite of an increase of two times over matrix size. This method will be look forward to applying the general dynamic system to calculate the transient dynamic response.

  • PDF

스마트폰 환경에서 가속도 벡터의 성분과 방향센서를 활용한 넘어지는 방향 측정 (Fall Direction Detection using the Components of Acceleration Vector and Orientation Sensor on the Smartphone Environment)

  • 이우식;송특섭
    • 한국멀티미디어학회논문지
    • /
    • 제18권4호
    • /
    • pp.565-574
    • /
    • 2015
  • Falls are the main cause of serious injuries and accidental deaths in people over the age of 65. Due to widespread adoption of smartphones, there has been a growing interest in the use of smartphones for detecting human behavior and activities. Modern smartphones are equipped with a wide variety of sensors such as an accelerometer, a gyroscope, camera, GPS, digital compass and microphone. In this paper, we introduce a new method that determines the fall direction of human subjects by analyzing the three axis components of acceleration vector.

가속도 센서를 이용한 걸음수 검출 알고리즘 (Step Count Detection Algorithm using Acceleration Sensor)

  • 한영환
    • 재활복지공학회논문지
    • /
    • 제9권3호
    • /
    • pp.245-250
    • /
    • 2015
  • 스마트 폰과 개인 휴대정보 단말기와 같은 장치는 일상생활에서 중요한 역할을 담당한다. 본 논문에서는 물리적 활동의 모니터링을 위해 신호벡터크기(signal vector magnitude)와 적응적인 임계값 처리에 기반한 걸음수 검출 알고리즘을 제안한다. 알고리즘은 스마트 폰에 내장된 가속도 센서와 중력 센서를 사용하여 걸음수를 측정한다. 실험결과 제안한 알고리즘이 스마트 폰의 어플에 비해 정확도와 적응성에서 좋은 성능을 나타내었다.

  • PDF

링레이저 자이로 관성항법시스템의 편향 오차 해석 (Flexure Error Analysis of RLG based INS)

  • 김광진;유명종;박찬국
    • 제어로봇시스템학회논문지
    • /
    • 제12권6호
    • /
    • pp.608-613
    • /
    • 2006
  • Any input acceleration that bends RLG dithering axis causes flexure error, which is a source of the noncommutative error that can not be compensated by simply using integrated gyro sensor output. This paper introduces noncommutative error equations that define attitude errors caused by flexure errors. In this paper, flexure error is classified as sensor level error if the sensing axis coincides with the dithering axis and as system level error if the two axes do not coincide. The relationship between gyro output and the rotation vector is introduced and is used to define the coordinate transformation matrix and angular motion. Equations are derived for both sensor level and system level flexure error analysis. These equations show that RLG based INS attitude error caused by flexure is directly proportional to time, amount of input acceleration and the dynamic frequency of the vehicle.

GPU-Based ECC Decode Unit for Efficient Massive Data Reception Acceleration

  • Kwon, Jisu;Seok, Moon Gi;Park, Daejin
    • Journal of Information Processing Systems
    • /
    • 제16권6호
    • /
    • pp.1359-1371
    • /
    • 2020
  • In transmitting and receiving such a large amount of data, reliable data communication is crucial for normal operation of a device and to prevent abnormal operations caused by errors. Therefore, in this paper, it is assumed that an error correction code (ECC) that can detect and correct errors by itself is used in an environment where massive data is sequentially received. Because an embedded system has limited resources, such as a low-performance processor or a small memory, it requires efficient operation of applications. In this paper, we propose using an accelerated ECC-decoding technique with a graphics processing unit (GPU) built into the embedded system when receiving a large amount of data. In the matrix-vector multiplication that forms the Hamming code used as a function of the ECC operation, the matrix is expressed in compressed sparse row (CSR) format, and a sparse matrix-vector product is used. The multiplication operation is performed in the kernel of the GPU, and we also accelerate the Hamming code computation so that the ECC operation can be performed in parallel. The proposed technique is implemented with CUDA on a GPU-embedded target board, NVIDIA Jetson TX2, and compared with execution time of the CPU.

An absolute displacement approach for modeling of sliding structures

  • Krishnamoorthy, A.
    • Structural Engineering and Mechanics
    • /
    • 제29권6호
    • /
    • pp.659-671
    • /
    • 2008
  • A procedure to analyse the space frame structure fixed at base as well as resting on sliding bearing using total or absolute displacement in dynamic equation is developed. In the present method, the effect of ground acceleration is not considered as equivalent force. Instead, the ground acceleration is considered as a known value in the acceleration vector at degree of freedom corresponding to base of the structure when the structure is in non-sliding phase. When the structure is in sliding phase, only a force equal to the maximum frictional resistance is applied at base. Also, in this method, the stiffness matrix, mass matrix and the damping matrix will not change when the structure enters from one phase to another. The results obtained from the present method using absolute displacement approach are compared with the results obtained from the analysis of structure using relative displacement approach. The applicability of the analysis is also demonstrated to obtain the response of the structure resting on sliding bearing with restoring force device.