• Title/Summary/Keyword: Accelerated testing

Search Result 371, Processing Time 0.022 seconds

An Accelerated Degradation Test of Electric Double-Layer Capacitors (전기이중층커패시터의 가속열화시험)

  • Jung, Jae-Han;Kim, Myung-Soo
    • Journal of Applied Reliability
    • /
    • v.12 no.2
    • /
    • pp.67-78
    • /
    • 2012
  • An electric double-layer capacitor(EDLC) is an electrochemical capacitor with relatively high energy density, typically hundreds of times greater than conventional electrolytic capacitors. EDLCs are widely used for energy storage rather than as general-purpose circuit components. They have a variety of commercial applications, notably in energy smoothing and momentary-load devices, and energy-storage and kinetic energy recovery system devices used in vehicles, etc. This paper presents an accelerated degradation test of an EDLC with rated voltage 2.7V, capacitance 100F, and usage temperature $-40^{\circ}C{\sim}65^{\circ}C$. The EDLCs are tested at $50^{\circ}C$, $60^{\circ}C$, and $70^{\circ}C$, respectively for 1,750hours, and their capacitances are measured at predetermined times by constant current discharge method. The failure times are predicted from their capacitance deterioration patterns, where the failure is defined as 30% capacitance decrease from the initial one. It is assumed that the lifetime distribution of EDLC follows Weibull and Arrhenius life-stress relationship holds. The life-stress relationship, acceleration factor, and $B_{10}$ life at design condition are estimated by analyzing the accelerated life test data.

A Study on Accelerated Corrosion Test by Combined Deteriorating Action of Salt Damage and Freeze-Thaw (염해 및 동결융해의 복합열화 작용에 의한 부식촉진시험에 관한 연구)

  • Park, Sang-Soon;So, Byung-Tak
    • Corrosion Science and Technology
    • /
    • v.15 no.1
    • /
    • pp.18-27
    • /
    • 2016
  • In this study, the accelerated corrosion test by combined deteriorating action of salt damage and freeze-thaw was investigated. freeze-thaw cycle is one method for corrosion testing; corrosion initiation time was measured in four types of concrete samples, i.e., two samples mixed with fly ash (FA) and blast furnace slag (BS), and the other two samples having two water/cement ratio (W/C = 0.6, 0.35) without admixture (OPC60 and OPC35). The corrosion of rebar embedded in concrete occurred most quickly at the $30^{th}$ freeze-thaw cycle. Moreover, a corrosion monitoring method with a half-cell potential measurement and relative dynamic elastic modulus derived from resonant frequency measures was conducted simultaneously. The results indicated that the corrosion of rebar occurred when the relative dynamic elastic modulus was less than 60%. Therefore, dynamic elastic modulus can be used to detect corrosion of steel bar. The results of the accelerated corrosion test exhibited significant difference according to corrosion periods combined with each test condition. Consequently, the OPC60 showed the lowest corrosion resistance among the samples.

Study on Long-term Performance of Phenolic Foam Insulation through Accelerated Aging Test (가속화 시험을 통한 페놀폼 단열재의 장기성능 비교분석에 관한 연구)

  • Kim, Jin-Hee;Kim, Sang-Myung;Kim, Jun-Tae
    • Journal of the Korean Solar Energy Society
    • /
    • v.40 no.2
    • /
    • pp.11-23
    • /
    • 2020
  • The application of the high-performance insulation materials for buildings seems to be an essential measure for reducing energy use in buildings. Phenolic foam is a readily available insulation material with thermal conductivity of about 0.018 to 0.020 W/(mK). It has the advantage of higher thermal resistance and better fire resistance compared to other conventional building insulation materials. Insulation material used for building envelope is regarded as one of the decisive factors for building's energy load. Furthermore, the degradation of its thermal performance over time increasingly affects the building's energy use demand. Generally, the life span of conventionally built buildings is expected to be more than 50 years, so the long-term performance of insulation materials is critical. This paper aims to evaluate the long-term performance of phenolic form boards through an accelerated aging test. The tests were conducted according to BS EN 13166 and KS M ISO 11561. Based on the results of the accelerated aging test, the thermal performance variation of the material was analyzed, and then its aged value after 25 years was computed. Also, the characteristics of the phenolic foam board's long-term performance were also examined based on the standard testing methods adopted.

Investigation of EVA Accelerated Degradation Test for Silicon Photovoltaic Modules

  • Kim, Jaeun;Rabelo, Matheus;Holz, Markus;Cho, Eun-Chel;Yi, Junsin
    • New & Renewable Energy
    • /
    • v.17 no.2
    • /
    • pp.24-31
    • /
    • 2021
  • Renewable energy has become more popular with the increase in the use of solar power. Consequently, the disposal of defective and old solar panels is gradually increasing giving rise to a new problem. Furthermore, the efficiency and power output decreases with aging. Researchers worldwide are engaged in solving this problem by developing eco-module technologies that restore and reuse the solar panels according to the defect types rather than simple disposal. The eco-module technology not only solves the environmental problem, but also has economic advantages, such as extending the module life. Replacement of encapsulants contributes to a major portion of the module maintenance plan, as the degradation of encapsulants accounts for 60% of the problems found in modules over the past years. However, the current International Electrotechnical Commission (IEC) standard testing was designed for the commercialization of solar modules. As the problem caused by long-term use is not considered, this method is not suitable for the quality assurance evaluation of the eco-module. Therefore, to design a new accelerated test, this paper provides an overview of EVA degradation and comparison with the IEC and accelerated tests.

Assessment of flow-accelerated corrosion-induced wall thinning in SA106 pipes with elbow sections

  • Seongin Moon;Jong Yeon Lee;Kyung-Mo Kim;Soon-Woo Han;Gyeong-Geun Lee;Wan-Young Maeng;Sebeom Oh;Dong-Jin Kim
    • Nuclear Engineering and Technology
    • /
    • v.56 no.4
    • /
    • pp.1244-1249
    • /
    • 2024
  • A combination of flow-accelerated corrosion (FAC) tests and corresponding computational fluid dynamics (CFD) tests were performed to determine the hydrodynamic parameters that could help predict the highly susceptible location to FAC in the elbow section. The accelerated FAC tests were performed on a specimen containing elbow sections fabricated using commercial 2-inch carbon steel pipe. The tests were conducted at flow rates of 9 m/s under the following conditions: water temperature of 150 ℃, dissolved oxygen <5 ppb, and pH 7. Thickness reduction of the specimen pipe due to FAC was measured using ultrasonic testing. CFD was conducted on the FAC test specimen, and the turbulence intensity, and shear stress were analyzed. Notably, the location of the maximum hydrodynamic parameters, that is, the wall shear stress and turbulent intensity, is also the same location with maximum FAC rate. Therefore, the shear stress and turbulence intensity can be used as hydrodynamic parameters that help predict the FAC-induced wall-thinning rate. The results provide a method to identify locations susceptible to FAC and can be useful for determining inspection priority in piping systems.

Development of Full Scale Accelerated Pavement Testing Facility (Full Scale 포장가속시험기 개발 연구)

  • Suh, Young-Chan;Yang, Sung-Chul;Ko, Ji-Hoon;Kwak, Dong
    • 한국도로학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.23-31
    • /
    • 2001
  • 국내 포장가속시험기의 개발은 도로신소재 개발, 중차량 교통하중의 영향분석, 온도 습도에 따른 포장체의 거동분석 등을 현장조건과 유사한 조건에서 실험 가능하게 함으로써 국내 도로분야의 연구 수준을 향상시킬 것으로 기대된다.

  • PDF

Accelerated life testing data analysis using the model incorporating the random environmental effect (환경 효과를 포함한 가속수명검사 모형을 이용한 추론)

  • 이석훈;박희창;강현희
    • The Korean Journal of Applied Statistics
    • /
    • v.9 no.2
    • /
    • pp.119-134
    • /
    • 1996
  • Accelerated life testing (ALT) of a system is commonly used to reduce time and cost. ALT is achieved by subjecting the test systems to more severe conditions than the normal ones to obtain estimates of life distribution under normal condition. The major interest of this research is to use a model of incorporating the common environmental effect on the components serially linked into a system-so called frailty model for the system life time distribution under each stress and to discuss the related data analysis and comparison of the model with the generally used one. The profile likelihood is used to get an initial values required to compute maximum likelihood estimates and simulation is carried for comparison.

  • PDF

The study of accelerating method for Mobile Product with sweat resistance (Mobile 제품 도장의 내한성(耐汗性) 가속 평가법 개발)

  • Park, Kwang-Young;Lim, Sung-Gyun;Cha, Seung-Kyu
    • Journal of Applied Reliability
    • /
    • v.6 no.3
    • /
    • pp.205-212
    • /
    • 2006
  • The purpose of this article is about the accelerated product-reliability-test method of the changing colors of mobile products, which are majorly from the frequent touching of sweating fingers. Such problems of changing colors of mobile products have found mostly In metallic paint containing aluminum paste pigments. Also we found that the color of Al Paste is changed by human sweat. Therefore, the accelerated experimental method has been tested as follow: applying the various concentration of lactic acid, which is the changing color components from human sweat, and deeping the testing sample under temperature of $60^{\circ}C$ in dilutelactic acid with water. From the series of tests, the most optimum concentration of lacticacid has been obtained in 10wt% and the sample is observed to be almost same effect as natural changing of colors by human touching after the test. It has been also confirmed from the cross-sectional analysis. In detail, the testing sample has changed its color in 48hr by changing color effect of Alpaste with 10 wt% of lactic acid, and the digit of $\Delta$ E has measured 10.9 after the test.

  • PDF