• Title/Summary/Keyword: Accelerated lifetime

Search Result 202, Processing Time 0.03 seconds

Derating design approach of LED for reliability improvement (LED(Light Emitting Diode)의 부하경감 설계)

  • Kim, Byung-Nam;Kim, Jae-Jung;Kang, Weon-Chang;Son, Young-Kap;Chang, Seog-Weon;Kwack, Kae-Dal
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1760-1765
    • /
    • 2007
  • This paper shows a derating design approach for LED reliability improvement. The LED is widely used in display devices or circuits. The main failure of interest is defined as 100% reduction of the light output intensity of LED resulting from corrosion due to stresses, i.e. temperature and humidity. The lifetime is varied according to the stress levels under where the LED operates so that correlation of the lifetime to these stress levels over time is modeled through accelerated life testings. A derating design approach to accomplish a required reliability level of LED is proposed to determine adequate the stress levels. In the approach, $B_{10}$ life, Failure rate, Sensitivity Analysis of LED are used as a reliability metric.

  • PDF

A Study on the Compensation Condition and the Lifetime Prediction in Power Cable (전력케이블의 수명평가와 보상조건에 관한 기초연구)

  • Lim, Jang-Seob;Noh, Sung-Ho;Kim, Ji-Sun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.50-50
    • /
    • 2010
  • 전력케이블의 수명예측은 전력설비의 적절한 전력설비의 신뢰성 확보에 목적이 있다. 그러나 장기간의 수명으로 설계되는 관계로 가속실험을 수행하여 중장기적인 절연성 추세를 평가하기 위해서 와이블 분포함수와 같은 통계적인 접근과 수영과 관련된 보상조건에 대한 고려가 필수적이다.

  • PDF

Useful Lifetime Evaluation of Rubber Component for Elevator Cabin (승강기용 방진고무부품 특성 및 사용수명 평가)

  • Woo, Chang-Su;Park, Hyun-Sung
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.576-580
    • /
    • 2008
  • Rubber material properties and useful life evaluation are very important in design procedure to assure the safety and reliability of the rubber components. In this paper, the evaluation of characteristics and useful life prediction of rubber component for elevator cabin were experimentally investigated. The material test and accelerated heat-aging test were carried. Rubber material constants were obtained by curve fittings of simple tension, pure shear and bi-axial tension test data. Heat aging test results changes as the threshold are used for assessment of the useful life and time to threshold value were plotted against reciprocal of absolute temperature to give the Arrhenius plot. By using the rubber material and component test several useful life prediction equations for rubber component were proposed. Predicted useful life of rubber component for elevator cabin agreed fairly with the experimental lives.

  • PDF

Lifetime Estimation due to IMC(Intermetallic Compound) formation between Au wire and Al pad (Au wire와 Al pad사이의 IMC(Intermetallic Compound) 형성에 의한 수명예측)

  • Son, Jung-Min;Chang, Mi-Soon;Kwack, Kae-Dal
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1295-1300
    • /
    • 2008
  • During the manufacturing and the service life of Au-Al wire bonded electronic packages, the ball bonds experience elevated temperatures and hence accelerated thermal diffusion reactions that promote the transformation of the Au-Al phases and the IMC growth. In this paper, the IC under high temperature storage (HTS) tests at $175^{\circ}C,\;200^{\circ}C$, and $250^{\circ}C$ are meticulously investigated. Thermal exposure resulted in the IMC growth, Kirkendall void and the crack of the Au-Al phases. The crack propagation occurs resulting in the failure of the Au-Al ball bonds. As the IC was exposed at the high temperature, decreased in the lifetime.

  • PDF

Study of Durability Effect Parameter in Inserting Bush into Suspension Link (서스펜션 링크의 부시 압입에 따른 내구 영향도 연구)

  • Lee, Kyusik
    • Journal of Applied Reliability
    • /
    • v.17 no.2
    • /
    • pp.143-149
    • /
    • 2017
  • Purpose: In recent years, weight reduction for improving fuel efficiency of the vehicle and cost reduction have been developed. The structure of suspension link is widely used as a single plate press structure which can reduce process and weight compared to existing pipe welding method. However, it was found that the lifetime of a single plate press structure is determined by initial defects that occurred during initial manufacturing rather than fatigue damage caused by driving. Methods: I research the mechanism of failure phenomenon of the single plate press assist arm of rear wheel. In addition, I investigate durability effect parameters to determine the link lifetime in inserting bush into single plate press process through durability test. Conclusion: I discover significant durability effect parameter in inserting bush into single plate press process. It is expected that the durability can be improved by suggesting a bush inserting process inspection guide for similar suspension link like single plate press structure.

Prediction of Life Time of Rail Rubber Pad using Reliability Analysis Method

  • Park, Dae-Geun
    • International Journal of Railway
    • /
    • v.6 no.1
    • /
    • pp.13-25
    • /
    • 2013
  • Railpad prevents damage of the tie and ballast by reducing the impact and high frequency vibration, which occurs when a vehicle load transfers to a tie. But elasticity of the railpad can decrease under vehicle load and over usable period. If that happens, railpad will become stiffer. Increase in stiffness of the railpad also translates into a rise in track maintenance cost because it accelerates the damage of the track. In this study, accelerated heat ageing test was performed to predict an expectable lifetime of the railpad. As a result, it was predicted to be about sixteen years at $25^{\circ}C$ that life time of railpad using NR rubber from Arrhenius relationship. Also, it was predicted to be about thirty-two days at $100^{\circ}C$. At this time, a standard rate of thickness change is approximately within 12%.

Stepped Isothermal Methods Using Time-Temperature Superposition Principles for Lifetime Prediction of Polyester Geogrids

  • Koo Hyun-Jin;Kim You-Kyum;Kim Dong-Whan
    • Proceedings of the Korean Reliability Society Conference
    • /
    • 2005.06a
    • /
    • pp.69-73
    • /
    • 2005
  • The failure of geogrids used for soil reinforcement application can be defined as an excessive creep strain which causes the collapse of slopes and embankments. Accordingly, the lifetime is evaluated as a time to reach the excessive creep strain using two accelerated creep testing methods, time-temperature superposition(TTS) and stepped isothermal methods(SIM). TTS is a well-accepted acceleration method to evaluate creep behavior of polymeric materials, while SIM was developed in the last ten years mainly to shorten testing time and minimize the uncertainty associated with inherent variability of multi-specimen tests. The SIM test is usually performed using single rib of geogrids for temperature steps of $14^{\circ}C$ and a dwell time of 10,000 seconds. However, for multi-ribs of geogrids, the applicability of the SIM has not been well established. In this study, the creep behaviors are evaluated using multi-ribs of polyester geogrids using SIM and TTS creep procedures and the newly designed test equipment. Then the lifetime of geogrids are predicted by analyzing the failure times to reach the excessive creep strains through reliability analysis.

  • PDF

A Study on the Lifetime Estimation and Leakage Test of Rubber O-ring in Contacted with Fuel at Accelerated Thermal Aging Conditions (가속노화조건 하 연료접촉 고무오링의 수명예측 및 누유시험 연구)

  • Chung, Kunwoo;Hong, Jinsook;Kim, Young-wun;Han, Jeongsik;Jeong, Byunghun;Kwon, Youngil
    • Tribology and Lubricants
    • /
    • v.35 no.4
    • /
    • pp.222-228
    • /
    • 2019
  • As rubber products such as O-rings, which are also known as packings or toric joints, come in regular, long term contact with liquid fuel, they can eventually swell, become mechanically weakened, and occasionally crack; this diminishes both their usefulness and intrinsic lifetime and could cause leaks during the steady-state flow condition of the fuel. In this study, we evaluate the lifetime of such products through compression set tests of FKM, a family of fluorocarbon elastomer materials defined by the ASTM international standard D141; these materials have great compression, sunlight, and ozone resistance as well as a low gas absorption rate. In this process, O-rings are immersed in the liquid fuel of airtight containers that can be expressed as a compression set, and the liquid fuel leakage in a flow rig tester at variable temperatures over 12 months is investigated. Using the Power Law model, our study determined a theoretical O-ring lifetime of 2,647 years, i.e. a semi-permanent lifespan, by confirming the absence of liquid fuel leakage around the O-ring assembled fittings. These results indicate that the FKM O-rings are significantly compatible for fuel tests to evaluate long-term sealing conditions.

Goodness of Fit Testing for Exponential Distribution in Step-Stress Accelerated Life Testing (계단충격가속수명시험에서의 지수분포에 대한 적합도검정)

  • Jo, Geon-Ho
    • Journal of the Korean Data and Information Science Society
    • /
    • v.5 no.2
    • /
    • pp.75-85
    • /
    • 1994
  • In this paper, I introduce the goodness-of-fit test statistics for exponential distribution using accelerated life test data. The ALT lifetime data were obtained by assuming step-stress ALT model, specially TRV model introduced by DeGroot and Goel(1979). The critical values are obtained for proposed test statistics, Kolmogorov-Smirnov, Kuiper, Watson, Cramer-von Mises, Anderson-Darling type, under various sample sizes and significance levels. The powers of the five test statistic are compared through Monte-Cairo simulation technique.

  • PDF

Design of Optimal Accelerated Life Tests for the Exponential Failure Distribution under Intermittent Inspection (지수고장분포(指數故障分布) 및 단속검사하(斷續檢査下)의 최적(最適) 가속수명시험(加速壽命侍險)의 설계(設計))

  • Seo, Sun-Keun;Choi, Jong-Deuk
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.17 no.1
    • /
    • pp.95-108
    • /
    • 1991
  • For the case where the lifetime at a constant stress level has exponential distribution, optimal accelerated life test plans are developed under the assumptions of intermittent inspection and Type I censoring. In a optimal plan, the low and high stress levels, the proportion of test units allocated and the inspection times at each stress are determined such that the asymptotic variance of the maximum likelihood estimator of logarithmic transformed mean at the use condition is minimized. In addition to the optimal plan in which numerical technique to solve the set of nonlinear equations must be employed to determine inspection times at each stress level, we also propose another plans which employ equally-spaced or equal probability inspection schemes at two overstress levels of corresponding optimal one. For both optimal and proposed plans, computational results indicate that the asymptotic variance of the estimated mean at the use stress is insensitive to number of inspections at overstress levels for the range of parameter values considered.

  • PDF