• Title/Summary/Keyword: Academic Text

Search Result 356, Processing Time 0.028 seconds

Quantitative Analysis of Research Trends in Korean E-Government Using Text Mining and Network Analysis Methods (국내 전자정부 연구동향에 대한 정량적 분석: 텍스트 마이닝과 네트워크 분석 기법을 중심으로)

  • Lee, Soo-In;Shin, Shin-Ae;Kang, Dong-Seok;Kim, Sang-Hyun
    • Informatization Policy
    • /
    • v.25 no.4
    • /
    • pp.84-107
    • /
    • 2018
  • The existing research on domestic e-government trends in Korea has weaknesses in that it depends only on qualitative research methods. Therefore, a quantitative analysis was conducted through this study as of September 2018 based on the data from 1996 to 2017. A total of seven research topics were derived from text mining, of which the network centrality of the framework and public policy effect were identified as highly significant. The results of this study provide academic and policy implications for the development of e-government. including that using a quantitative analysis method instead of a qualitative method contributes to ensuring relative objectivity and diversity of learning.

A Case Study on Characteristics of Gender and Major in Career Preparation of University Students from Low-income Families: Application of Text Frequency Analysis and Association Rules (저소득층 대학생들의 진로준비과정에서의 성별·전공별 특성에 대한 사례연구: 텍스트 빈도분석과 연관분석의 적용)

  • Lee, Jihye;Lee, Shinhye
    • Journal of Digital Convergence
    • /
    • v.16 no.12
    • /
    • pp.61-69
    • /
    • 2018
  • This study aims to understand and to infer the implications from the career preparation experiences of low-income university students in the context of high youth unemployment rate and the polarization of the social classes. For this purpose, we selected 13 university students who received scholarship from the S scholarship foundation and conducted analysis using text mining techniques based on the six-time interviews. According to the results, university students seem to be influenced by home environment and income level when recalling previous academic experience or designing career during the interview process. Also, these differences were found to have different characteristics according to gender and major. This study is meaningful in that the qualitative research data is analyzed by applying the text mining technique in a convergent way. As a result, the college life and career preparation of low-income university students were explored through the frequency and relation of words.

Sentiment Analysis of Foot-and-Mouth Disease Using Tweet Text-Mining Technique (트윗 텍스트 마이닝 기법을 이용한 구제역의 감성분석)

  • Chae, Heechan;Lee, Jonguk;Choi, Yoona;Park, Daihee;Chung, Yongwha
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.7 no.11
    • /
    • pp.419-426
    • /
    • 2018
  • Due to the FMD(foot-and-mouth disease), the domestic animal husbandry and related industries suffer enormous damage every year. Although various academic researches related to FMD are ongoing, engineering studies on the social effects of FMD are very limited. In this study, we propose a systematic methodology to analyze emotional responses of regular citizens on FMD using text mining techniques. The proposed system first collects data related to FMD from the tweets posted on Twitter, and then performs a polarity classification process using a deep-learning technique. Second, keywords are extracted from the tweet using LDA, which is one of the typical techniques of topic modeling, and a keyword network is constructed from the extracted keywords. Finally, we analyze the various social effects of regular citizens on FMD through keyword network. As a case study, we performed the emotional analysis experiment of regular citizens about FMD from July 2010 to December 2011 in Korea.

A Study on the Perception of Fashion Platforms and Fashion Smart Factories using Big Data Analysis (빅데이터 분석을 이용한 패션 플랫폼과 패션 스마트 팩토리에 대한 인식 연구)

  • Song, Eun-young
    • Fashion & Textile Research Journal
    • /
    • v.23 no.6
    • /
    • pp.799-809
    • /
    • 2021
  • This study aimed to grasp the perceptions and trends in fashion platforms and fashion smart factories using big data analysis. As a research method, big data analysis, fashion platform, and smart factory were identified through literature and prior studies, and text mining analysis and network analysis were performed after collecting text from the web environment between April 2019 and April 2021. After data purification with Textom, the words of fashion platform (1,0591 pieces) and fashion smart factory (9750 pieces) were used for analysis. Key words were derived, the frequency of appearance was calculated, and the results were visualized in word cloud and N-gram. The top 70 words by frequency of appearance were used to generate a matrix, structural equivalence analysis was performed, and the results were displayed using network visualization and dendrograms. The collected data revealed that smart factory had high social issues, but consumer interest and academic research were insufficient, and the amount and frequency of related words on the fashion platform were both high. As a result of structural equalization analysis, it was found that fashion platforms with strong connectivity between clusters are creating new competitiveness with service platforms that add sharing, manufacturing, and curation functions, and fashion smart factories can expect future value to grow together, according to digital technology innovation and platforms. This study can serve as a foundation for future research topics related to fashion platforms and smart factories.

Analysis of CSR·CSV·ESG Research Trends - Based on Big Data Analysis - (CSR·CSV·ESG 연구 동향 분석 - 빅데이터 분석을 중심으로 -)

  • Lee, Eun Ji;Moon, Jaeyoung
    • Journal of Korean Society for Quality Management
    • /
    • v.50 no.4
    • /
    • pp.751-776
    • /
    • 2022
  • Purpose: The purpose of this paper is to present implications by analyzing research trends on CSR, CSV and ESG by text analysis and visual analysis(Comprehensive/ Fields / Years-based) which are big data analyses, by collecting data based on previous studies on CSR, CSV and ESG. Methods: For the collection of analysis data, deep learning was used in the integrated search on the Academic Research Information Service (www.riss.kr) to search for "CSR", "CSV" and "ESG" as search terms, and the Korean abstracts and keyword were scrapped out of the extracted paper and they are organize into EXCEL. For the final step, CSR 2,847 papers, CSV 395 papers, ESG 555 papers derived were analyzed using the Rx64 4.0.2 program and Rstudio using text mining, one of the big data analysis techniques, and Word Cloud for visualization. Results: The results of this study are as follows; CSR, CSV, and ESG studies showed that research slowed down somewhat before 2010, but research increased rapidly until recently in 2019. Research have been found to be heavily researched in the fields of social science, art and physical education, and engineering. As a result of the study, there were many keyword of 'corporate', 'social', and 'responsibility', which were similar in the word cloud analysis. Looking at the frequent keyword and word cloud analysis by field and year, overall keyword were derived similar to all keyword by year. However, some differences appeared in each field. Conclusion: Government support and expert support for CSR, CSV and ESG should be activated, and researches on technology-based strategies are needed. In the future, it is necessary to take various approaches to them. If researches are conducted in consideration of the environment or energy, it is judged that bigger implications can be presented.

Trends in FTA Research of Domestic and International Journal using Paper Abstract Data (초록데이터를 활용한 국내외 FTA 연구동향: 2000-2020)

  • Hee-Young Yoon;Il-Youp Kwak
    • Korea Trade Review
    • /
    • v.45 no.5
    • /
    • pp.37-53
    • /
    • 2020
  • This study aims to provide the implications of research development by comparing domestic and international studies conducted on the subject of FTA. To this end, among the papers written during the period from 2000 to July 23, 2020, papers whose title is searched by FTA (Free Trade Agreement) were selected as research data. In the case of domestic research, 1,944 searches from the Korean Citation Index (KCI) and 970 from the Web of Science and SCOPUS were selected for international research, and the research trend was analyzed through keywords and abstracts. Frequency analysis and word embedding (Word2vec) were used to analyze the data and visualized using t-SNE and Scattertext. The results of the analysis are as follows. First, in the top 30 keywords of domestic and international research, 16 out of 30 were found to be the same. In domestic research, many studies have been conducted to analyze the outcomes or expected effects of countries that have concluded or discussed FTAs with Korea, on the other hand there are diverse range of study subjects in international research. Second, in the word embedding analysis, t-SNE was used to visually represent the research connection of the top 60 keywords. Finally, Scattertext was used to visually indicate which keywords were frequently used in studies from 2000 to 2010, and from 2011 to 2020. This study is the first to draw implications for academic development through abstract and keyword analysis by applying various text mining approaches to the FTA related research papers. Further in-depth research is needed, including collecting a variety of FTA related text data, comparing and analyzing FTA studies in different countries.

Analysis of Research Trends on Archival Information Services Using Text Mining (텍스트마이닝을 활용한 국내외 기록서비스 연구동향 분석)

  • Seohee Park;Hye-Eun Lee
    • Journal of Korean Society of Archives and Records Management
    • /
    • v.24 no.1
    • /
    • pp.89-109
    • /
    • 2024
  • The study analyzed the research trends of domestic and international record information services from 2003 to 2022. A total of 136 academic papers registered in the Korea Citation Index (KCI) and 74 from the Library, Information Science & Technology Abstracts (LISTA) were examined by quantitative and qualitative content analysis to understand the research status of 20 years from various angles, such as publication year, research type, researcher type, subject, and purpose. Frequency analysis, co-occurrence frequency analysis, centrality analysis, and topic modeling were performed by applying text mining techniques. Results showed that domestic papers demonstrated a research flow focused on specific institutions or records, and user-centered satisfaction surveys and content-centered studies were conducted. Moreover, foreign papers confirmed various evaluation-oriented and information provision studies, such as data, resources, and collections, along with the research trend focusing on the relationship between archivists and users. The management of information resources was identified as a common topic in both domestic and foreign papers, but it is possible to identify that domestic research focuses on maintaining the quality of domestic information resources, while foreign research focuses on the storage and retrieval of information.

An Exploratory Study of Success Factors for Generative AI Services: Utilizing Text Mining and ChatGPT (생성형AI 서비스의 성공요인에 대한 탐색적 연구: 텍스트 마이닝과 ChatGPT를 활용하여)

  • Ji Hoon Yang;Sung-Byung Yang;Sang-Hyeak Yoon
    • Information Systems Review
    • /
    • v.25 no.2
    • /
    • pp.125-144
    • /
    • 2023
  • Generative Artificial Intelligence (AI) technology is gaining global attention as it can automatically generate sentences, images, and voices that humans previously generated. In particular, ChatGPT, a representative generative AI service, shows proactivity and accuracy differentiated from existing chatbot services, and the number of users is rapidly increasing in a short period of time. Despite this growing interest in generative AI services, most preceding studies are still in their infancy. Therefore, this study utilized LDA topic modeling and keyword network diagrams to derive success factors for generative AI services and to propose successful business strategies based on them. In addition, using ChatGPT, a new research methodology that complements the existing text-mining method, was presented. This study overcomes the limitations of previous research that relied on qualitative methods and makes academic and practical contributions to the future development of generative AI services.

A Sustainable Development Issues and Trends in Myanmar: A Text Network Analysis (미얀마의 지속가능발전에 대한 이슈 및 트렌드 분석: 텍스트 네트워크 분석)

  • Phyo Su Thwe;EuiBeom Jeong;DonHee Lee
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.29 no.4
    • /
    • pp.105-122
    • /
    • 2024
  • Myanmar was successful in increasing its sustainable development index during the three years period from 2018 to 2020. However, the index began to decline since 2021. This study aims to analyze both the success factors and obstacles for sustainable development in Myanmar. Using the search terms 'Myanmar' and 'sustainability', online news items were collected from January 2018 to December 2023 and were examined through text network analysis. The study identified the following success factors that contribute to sustainable development in Myanmar: foreign investments, private companies' participation in the effort, human resource development projects, and the use of new and renewable energy. The inhibition factors for the development efforts identified were: government's coercive/restrictive policies, labor rights violations, and forest degradation. The findings of this study provide useful insights for understanding the current status of sustainability in Myanmar from academic and practical perspectives. The results also present benchmarking information for policy-makers in Myanmar and other similar developing countries that are searching for strategic directions in their sustainable development efforts.

Comparison of Cognitive Loads between Koreans and Foreigners in the Reading Process

  • Im, Jung Nam;Min, Seung Nam;Cho, Sung Moon
    • Journal of the Ergonomics Society of Korea
    • /
    • v.35 no.4
    • /
    • pp.293-305
    • /
    • 2016
  • Objective: This study aims to measure cognitive load levels by analyzing the EEG of Koreans and foreigners, when they read a Korean text with care selected by level from the grammar and vocabulary aspects, and compare the cognitive load levels through quantitative values. The study results can be utilized as basic data for more scientific approach, when Korean texts or books are developed, and an evaluation method is built, when the foreigners encounter them for learning or an assignment. Background: Based on 2014, the number of the foreign students studying in Korea was 84,801, and they increase annually. Most of them are from Asian region, and they come to Korea to enter a university or a graduate school in Korea. Because those foreign students aim to learn within Universities in Korea, they receive Korean education from their preparation for study in Korea. To enter a university in Korea, they must acquire grade 4 or higher level in the Test of Proficiency in Korean (TOPIK), or they need to complete a certain educational program at each university's affiliated language institution. In such a program, the learners of the Korean language receive Korean education based on texts, except speaking domain, and the comprehension of texts can determine their academic achievements in studying after they enter their desired schools (Jeon, 2004). However, many foreigners, who finish a language course for the short-term, and need to start university study, cannot properly catch up with university classes requiring expertise with the vocabulary and grammar levels learned during the language course. Therefore, reading education, centered on a strategy to understand university textbooks regarded as top level reading texts to the foreigners, is necessary (Kim and Shin, 2015). This study carried out an experiment from a perspective that quantitative data on the readers of the main player of reading education and teaching materials need to be secured to back up the need for reading education for university study learners, and scientifically approach educational design. Namely, this study grasped the difficulty level of reading through the measurement of cognitive loads indicated in the reading activity of each text by dividing the difficulty of a teaching material (book) into eight levels, and the main player of reading into Koreans and foreigners. Method: To identify cognitive loads indicated upon reading Korean texts with care by Koreans and foreigners, this study recruited 16 participants (eight Koreans and eight foreigners). The foreigners were limited to the language course students studying the intermediate level Korean course at university-affiliated language institutions within Seoul Metropolitan Area. To identify cognitive load, as they read a text by level selected from the Korean books (difficulty: eight levels) published by King Sejong Institute (Sejonghakdang.org), the EEG sensor was attached to the frontal love (Fz) and occipital lobe (Oz). After the experiment, this study carried out a questionnaire survey to measure subjective evaluation, and identified the comprehension and difficulty on grammar and words. To find out the effects on schema that may affect text comprehension, this study controlled the Korean texts, and measured EEG and subjective satisfaction. Results: To identify brain's cognitive load, beta band was extracted. As a result, interactions (Fz: p =0.48; Oz: p =0.00) were revealed according to Koreans and foreigners, and difficulty of the text. The cognitive loads of Koreans, the readers whose mother tongue is Korean, were lower in reading Korean texts than those of the foreigners, and the foreigners' cognitive loads became higher gradually according to the difficulty of the texts. From the text four, which is intermediate level in difficulty, remarkable differences started to appear in comparison of the Koreans and foreigners in the beginner's level text. In the subjective evaluation, interactions were revealed according to the Koreans and foreigners and text difficulty (p =0.00), and satisfaction was lower, as the difficulty of the text became higher. Conclusion: When there was background knowledge in reading, namely schema was formed, the comprehension and satisfaction of the texts were higher, although higher levels of vocabulary and grammar were included in the texts than those of the readers. In the case of a text in which the difficulty of grammar was felt high in the subjective evaluation, foreigners' cognitive loads were also high, which shows the result of the loads' going up higher in proportion to the increase of difficulty. This means that the grammar factor functions as a stress factor to the foreigners' reading comprehension. Application: This study quantitatively evaluated the cognitive loads of Koreans and foreigners through EEG, based on readers and the text difficulty, when they read Korean texts. The results of this study can be used for making Korean teaching materials or Korean education content and topic selection for foreigners. If research scope is expanded to reading process using an eye-tracker, the reading education program and evaluation method for foreigners can be developed on the basis of quantitative values.