• Title/Summary/Keyword: Abutments

Search Result 424, Processing Time 0.025 seconds

Immediate Loading of Narrow Diameter Implants at the Mandibular Incisor Area Using Full Digital Flow: A Case Report

  • Ahn, Ji Ho;Lim, Young-Jun;Baek, Yeon-Wha;Lee, Jungwon
    • Journal of Korean Dental Science
    • /
    • v.15 no.1
    • /
    • pp.92-99
    • /
    • 2022
  • This case report describes the immediate loading of narrow diameter implants in the mandibular incisor area using full-digital flow. The 3-dimensional position of the implants was planned using digital software, and the corresponding surgical template was fabricated. The implants were inserted immediately after extraction and on the same day, the interim abutment and bridge were placed. At 8 weeks after surgery, the stability of the implants was measured and a digital impression was made using a scan body. Customized titanium abutments and a cement-type full zirconia bridge were delivered. At 36 weeks' follow-up, no clinical or radiographic complications were detected, and the patient was satisfied with the results.

The effect of heat to remove cement on implant titanium abutment and screw (시멘트 제거를 위해 가한 열이 임플란트 티타늄 지대주와 나사에 미치는 영향)

  • Yi, Hyo-Gyoung;Gil, Ki-Sung;Lee, Jung-Jin;Ahn, Seung-Geun;Seo, Jae-Min
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.56 no.3
    • /
    • pp.179-187
    • /
    • 2018
  • Purpose: The purpose of this study was to investigate the effect of heat applied to disintegrate cement on the removal torque value and fracture strength of titanium abutment and abutment screw. Materials and methods: Implants, titanium abutments and abutment screws were prepared for each 20 piece. Implant abutments and screws were classified as the control group in which no heat was applied and the experimental group was heated in a vacuum furnace to $450^{\circ}C$ for 8 minutes and cooled in air. The abutments and screws were connected to the implants with 30 Ncm tightening torque at interval 10 minutes and the removal torque value was measured 15 minutes later. And the fracture strength of abutment screw was measured using universal testing machine. Results: The mean removal torque value was $27.84{\pm}1.07Ncm$ in the control group and $26.55{\pm}1.56Ncm$ in the experimental group and showed statistically significant difference (P < .05). The mean fracture strength was $731.47{\pm}39.46N$ in the control group and $768.58{\pm}46.73N$ in the experimental group and showed statistically no significant difference (P > .05). Conclusion: The heat applied for cement disintegration significantly reduced the removal torque value of the abutment screw and did not significantly affect fracture strength of the abutment screw. Therefore, in the case of applying heat to disintegrate cement it is necessary to separate the abutment screw or pay attention to the reuse of the heated screw. However further studies are needed to evaluate the clinical reuse of the heated screw.

Finite Element Analysis of Bone Stress Caused by Horizontal Misfit of Implant Supported Three-Unit Fixed Prosthodontics (3차원 유한요소법에 의한 임플란트 지지 3본 고정성 가공 의치의 부적합도가 인접골 응력에 미치는 영향 분석)

  • Lee, Seung-Hwan;Jo, Kwang-Hun
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.28 no.2
    • /
    • pp.147-161
    • /
    • 2012
  • This study is to assess the effect of horizontal misfit of an implant supported 3-unit fixed prosthodontics on the stress development at the marginal cortical bone surrounding implant neck. Two finite element models consisting of a three unit fixed prosthodontics and an implant/bone complex were constructed on a three dimensional basis. The three unit fixed prosthodontics were designed either shorter (d=17.8mm model) or longer (d=18.0mm model) by 0.1mm than the span of two implants placed at the mandibular second premolar and second molar areas 17.9mm apart. Fitting of the fixed prosthodontics onto the implant abutments was simulated by a total of 6 steps, that is to say, 0.1mm displacement per each step, using DEFORM 3D (ver 6.1, SFTC, Columbus, OH, USA) program. Stresses in the fixed prosthodontics and implants were evaluated using von-Mises stress, maximum compressive stress, and radial stress as necessary. The d=17.8mm model assembled successfully on to the implant abutments while d=18.0mm model did not. Regardless if the fixed prosthodontics fitted onto the abutments or not, excessively higher stresses developed during the course of assembly trial and thereafter. On the marginal cortical bone around implants during the assembly, the peak tensile and compressive stresses were as high as 186.9MPa and 114.1MPa, respectively, even after the final sitting of the fixed prosthodontics (for d=17.8mm model). For this case, the area of marginal bone subject to compressive stresses above 55MPa, equivalent of the $4,000{\mu}{\varepsilon}$, i.e. the reported threshold strain to inhibit physiological remodeling of human cortical bone, extended up to 2mm away from implant during the assembly. Horizontal misfit of 0.1mm can produce excessively high stresses on the marginal cortical bone not only during the fixed prosthodontics assembly but also thereafter.

Three-Dimensional Finite Element Analysis of Internal Connection Implant System (Gsii$^{(R)}$) According to Three Different Abutments and Prosthetic Design (국산 내부연결형 임플란트시스템(GS II$^{(R)}$)에서 지대주 연결방식에 따른 응력분석에 관한 연구)

  • Jang, Mi-Ra;Kwak, Ju-Hee;Kim, Myung-Rae;Park, Eun-Jin;Park, Ji-Marn;Kim, Sun-Jong
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.26 no.2
    • /
    • pp.179-195
    • /
    • 2010
  • In the internal connection system, the loading transfer mechanism within the inner surface of the implant and also the stress distribution occuring to the mandible can be changed according to the abutment form. Therefore it is thought to be imperative to study the difference of the stress distribution occuring at the mandible according to the abutment form. The purpose of this study was to assess the loading distributing characteristics of three different abutments for GS II$^{(R)}$ implant fixture(Osstem, Korea) under vertical and inclined loading using finite element analysis. Three finite element models were designed according to three abutments; 2-piece Transfer$^{TM}$ abutment made of pure titanium(GST), 2-piece GoldCast$^{TM}$ abutment made of gold alloy(GSG), 3-piece Convertible$^{TM}$ abutment with external connection(GSC). This study simulated loads of 100N in a vertical direction on the central pit(load 1), on the buccal cusp tip(load 2) and $30^{\circ}$ inward inclined direction on the central pit(load 3), and on the buccal cusp tip(load 4). The following results were obtained. 1. Without regard to the loading condition, greater stress was concentrated at the cortical bone contacting the upper part of the implant fixture and lower stress was taken at the cancellous bone. 2. When off-axis loading was applied, high stress concentration observed in cervical area. 3. GSG showed even stress distribution in crown, abutment and fixture. GST showed high stress concentration in fixture and abutment screw. GSC showed high stress concentration in fixture and abutment. 4. Maximum von Mises stress in the surrounding bone had no difference among three abutment type. In GS II$^{(R)}$ conical implant system, different stress distribution pattern was showed according to the abutment type and the stress-induced pattern at the supporting bone according to the abutment type had no difference among them.

Influence of internal connection length on screw loosening in internal connection implants (내측 연결 임플란트에서 지대주 내부길이가 나사 풀림에 미치는 영향)

  • Kim, Ji-Sun;Park, Young-Bum;Choi, Hynmin;Kim, Sungtae;Kim, Hyeon Cheol;Kim, Sun Jai;Moon, Hong-Seok;Lee, Jae-Hoon
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.55 no.3
    • /
    • pp.251-257
    • /
    • 2017
  • Purpose: The purpose of this study was to evaluate whether the internal abutment length affected screw stability in an internal connection implant. Materials and methods: Twenty long internal connection implants (Replus system, $4.7{\times}11.5mm$) were selected for this investigation. Abutments were assigned to four groups depending on the length of the internal connection (abutments with internal lengths of 1, 2, 3, and 4 mm, respectively). Each implant fixture specimen was embedded in resin medium and connected to an abutment with an abutment screw. A load of 100 N, applied at an angle of $30^{\circ}$ to the long axis of the implant, was repeated for $1.0{\times}10^6$ cycles. Reverse torque values (RTV) were recorded before and after loading, and the change in RTV was calculated. Data were analyzed with the Kruskal-Wallis test. Results: The change in RTV was not significantly different among the groups (P>.05). Screw loosening and fractures were not observed in any groups, and joint stability was maintained. Conclusion: The internal length of the abutment may not significantly affect the degree of screw loosening.

COMPARATIVE ACCURACY OF THE SPLINTED AND UNSPLINTED IMPRESSION METHODS FOR INTERNAL CONNECTION

  • Choi, Jung-Han;Kim, Chang-Whe;Jang, Kyung-Soo;Lim, Young-Jin
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.43 no.3
    • /
    • pp.352-362
    • /
    • 2005
  • Statement of problem. Accurate impression is essential to success of implant prostheses. But there have been few studies about the accuracy of fixture-level impression techniques in internal connection implant systems. Purpose. The purpose of this study was to compare the accuracy of two fixture-level impression techniques in two conditions (parallel and divergent) and to assess the effect of tightening sequences and forces on stresses generated on superstructures in internal connection implant system (Astra Tech). Material and methods. Two metal master frameworks made from two abutments (Cast-to Abutment ST) each and a corresponding, passively fitting, dental stone master cast with four fixture replicas (Fixture Replica ST) were fabricated. Ten dental stone casts for each impression techniques (direct unsplinted & splinted technique) were made with vinyl polysiloxane impressions from the master cast. Strain gauges for each framework were fixed midway between abutments to measure the degree of framework deformation on each stone cast. Pairs of strain gauges placed opposite each other constituted one channel (half Wheatstone bridge) to read deformation in four directions (superior, inferior, anterior, and posterior). Deformation data were analyzed using one-way ANOVA and the Tukey test at the .01 level of significance. And the effect of tightening sequences (right-to-left and left-to-right) and forces (10 Ncm and 20 Ncm) were assessed with ten stone casts made from parallel condition by the splinted technique. Deformation data were analyzed using paired t-test at the .01 level of significance. Conclusions. Within the limitations of this study, the following conclusions could be drawn. 1. Frameworks bent toward the inferior side on all casts made by both direct unsplinted and splinted impression techniques in both parallel and divergent conditions. 2. There was no statistically significant difference of accuracy between the direct unsplinted and splinted impression techniques in both parallel and divergent conditions (P>.01). 3. There was no statistically significant difference of stress according to screw tightening sequences in casts made by the splinted impression technique in parallel condition (P>.01). 4. Greater tightening force resulted in greater stress in casts made by the splinted impression technique in parallel condition (P<.01).

FINITE ELEMENT ANALYSIS OF MANDIBULAR STRESSES INDUCED BY OVERDENTURE WITH DIFFERENT DESIGNS OF ABUTMENT COPINGS (지대치 coping형태에 따른 overdenture하에서 하악 응력에 관한 유한요소법적 분석)

  • Park Hae-Kyoon;Chung Chae-Heon;Cho Kyu-Zong
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.29 no.3
    • /
    • pp.141-170
    • /
    • 1991
  • This study was to analyze the displacement and the magnitude and mode of distribution of the stresses in the lower overdenture, the mucous membrane, the abutment teeth and the mandibular supporting bone when various abutment designs were subjected to different loading schemes. For this study, the two-dimensional finite element method was used. The models of overdenture and mandibe with the canine and the second premolar remaining, were fabricated. In the first design, a 1 mm space was prepared between the denture and the dome abutment with the height of 2 mm(OS). In the second design, a contact between the denture and the occlusal third of the dome abutment with the hight of 2 mm was prepared(OC). In the third design, a 0.5 mm space was prepared between the denture and 8 degree tapered cylindrical abutments with the height of 7 mm(TS). In the fourth design, a contact between the denture and the occlusal two thirds of the conical abutments with the height of 7 mm was prepared(TC). In order to represent the same physiological condition as the fixed areas of the mandible under loading schemes, the eight nodes which lie at the mandibular angle, the coronoid process and the mandibular condyle were assumed to be fixed. Each model was loaded with a magnitude of 10 Kgs on the first molar region (P1) and 7 Kgs on the central incisor region (P2) in a vertical direction. The force of 10 Kgs was then applied distributively from the first premolar to the second molar of each motel in a vertical direction (P3). The results were as follows: 1. The vertical load on the central incisor region(P2) produced the higher displacement and stress concentration than that on the posterior region(P1, P3). 2. The case of space between abutment and denture base produced higher displacement than that of contact, and the case of long abutment produced higher displacement than that of short abutment because of low rigidity of denture base. 3. The magnitude of the torque and vertical force to the abutment teeth and the stress distribution to the denture base was higher in the telescope coping than in the overdenture coping. 4. The vertical load on the central incisor region(P2) produced higher equivalent stress in the mandible than that on the posterior region(P1, P3). 5. The case of space between abutment and denture base produced better stress distribution to the farther abutment from the loading point than that of contact. 6. In case of sound abutment teeth, the type of telescope coping can be used, hilt in case of weak abutment, the type of overdenture coping is considered to be favorable generally.

  • PDF

A STUDY ON THE ACCURACY OF DENTAL CAST AND DIE MATERIALS USING PHOTO-SCANNING (사진 주사(走査)를 이용한 치과용 모형재의 정확도에 관한 연구)

  • Yang, Seong-Wook;Lim, Ju-Hwan;Cho, In-Ho
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.34 no.2
    • /
    • pp.320-334
    • /
    • 1996
  • Dental cast and die materials are essential material using in almost dental prsthodontic procedure and it's most important requirement is accuracy for reqorducing the oral anatomical structures. In this study, 5 abutments A, B, C, D, E were fabricated on the metal master model to simulate the arch form and specimens were poured with 4 cast materials. Inter-abutment distances, A-B, A-C, A-D, A-E, B-C, B-D were calculated using the photo-scanning and the deviations from the metal master model were also evaluated. The results were as follows; 1. The distance between A-B, A-C, A-D, A-E, B-C, B-D of the abutments A, B, C, D, E of each cast material was calculated. And after comparing the deviations between the metal master model. $Fujirock^{(R)}$ showed the lowest value with $0.20{\pm}0.22mm$, and the deviation increased in the order of $Suprastone^{(R)}$, Epoxy $Die^{(R)}$, Die $Keen^{(R)}$. There was significant difference between $Fujirock^{(R)}$ and Epoxy $Die^{(R)}$, Die $Keen^{(R)}$. 2. In each calculation area, the difference in measurements between cast material and metal master model showed singificant difference between A-B and Cross arch measure-ments of A-D, B-D, A-E(p<0.05). 3. The difference in measurements between cast material and metal master model in the A-B area showed $Fujirock^{(R)}$ to be the lowest with $0.05{\pm}0.04$mm and increased in the order of Die $Keen^{(R)}$, $Suprastone^{(R)}$, Epoxy $Dies^{(R)}$. There was significant difference between $Fujirock^{(R)}$ and $Suprastone^{(R)}$, Epoxy $Die^{(R)}$ (p<0.05). 4. The difference in measurements between cast material and metal master model in the B-C area showed $Fujirock^{(R)}$ to bo the lowest with $0.17{\pm}0.11$mm and increased in the order of $Suprastone^{(R)}$, Die $Keen^{(R)}$, Epoxy $Dies^{(R)}$. There was significant difference between $Fujirock^{(R)}$ and Die $Keen^{(R)}$, Epoxy $Die^{(R)}$(p<0.05). 5. The difference in measurements between cast material and metal master model in the B-D area showed $Fujirock^{(R)}$ to bo the lowest with $0.13{\pm}0.07$mm, Epoxy $Dies^{(R)}$and increased in the order of $Suprastone^{(R)}$, Die $Keen^{(R)}$. There was significant difference between $Fuji-rock^{(R)}$ and Die Keen(p<0.05). 6. In this experiment, Epoxy $Dies^{(R)}$ showed mean contraction in every calculation area. And when reconstruction cross arch restorations it is thought that distortion should be considered in every cast material.

  • PDF

The Study on the Physical Property of Provisional Prosthesis using Modified Temporary Abutment (변형된 임플란트 임시 지대주의 물성에 대한 연구)

  • Yang, Byung-Duk;Yoon, Tae-Ho;Choi, Un-Jae;Park, Ju-Mi
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.22 no.4
    • /
    • pp.329-340
    • /
    • 2006
  • Statement of problem: Damping of the peak force transmitted to implants has been reported by in vitro studies using impact forces on resin-veneered superstructures. Theoretical assumptions suggest that use of acrylic resin for the occlusal surfaces of a prosthesis would protect the connection between implant and bone. Therefore, the relationship between prosthesis materials and the force transmitted through the implant system also needs to be investigated under conditions that resemble the intraoral mechanical environment. Purpose: The purpose of this study was to analyze the fracture strength and modes of temporary prosthesis when a flange or occlusally extended structure were connected on the top of the abutment. Material and method: Modified abutments of winged and bulk design were made by casting the desired wax pattern which is made on the UCLA type plastic cylinder. Temporary crowns were made using templates on the modified abutments, and its fracture toughness and strain were compared to the traditional temporary prosthesis. To evaluate the effect of aging, 5.000 times of thermocycling were performed, and their result was compared to the 24hours specimen result. Results: The following conclusions were drawn from this study: 1. In the fracture toughness test, temporary crown's fracture line located next to the screw hole while modified designs with metal support showed fracture line on the metal and its propagation along the metal-resin interface. 2. Wing and bulk structure didn't show significant difference in the fracture toughness (p>0.05), but wing structure showed stress concentration on the screw hole area compared to bulk structure which showed even stress distribution. 3. In the fracture toughness test after thermocycling, wing and bulk structure showed increased or similar results in metal supported area while off-metal area and temporary crown showed decreased results. 4. In the strain measurement after thermocycling, its value increased in the temporary and bulk structure. However, wing structure showed decreased value in the loading point while increased value in the screw hole area. Conclusion: Wing type design showed compatible result to the bulk type that its application with composite resin prosthesis to the implant dentistry is considered promising.

Effect of repeated learning for two dental CAD software programs (두 종의 치과용 캐드 소프트웨어에 대한 반복학습의 효과)

  • Son, KeunBaDa;Lee, Wan-Sun;Lee, Kyu-Bok
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.33 no.2
    • /
    • pp.88-96
    • /
    • 2017
  • Purpose: The purpose of this study is to assess the relationship between the time spent designing custom abutments and repeated learning using dental implant computer aided design (CAD) software. Materials and Methods: The design of customized abutments was performed four stages using the 3DS CAD software and the EXO CAD software, and measured repeatedly three times by each stage. Learning effect by repetition was presented with the learning curve, and the significance of the reduction in the total time and the time at each stage spent on designing was evaluated using the Friedman test and the Wilcoxon signed rank test. The difference in the design time between groups was analyzed using the repeated measure two-way ANOVA. Statistical analysis was performed using the SPSS statistics software (P < 0.05). Results: Repeated learning of the customized abutment design displayed a significant difference according to the number of repetition and the stage (P < 0.001). The difference in the time spent designing was found to be significant (P < 0.001), and that between the CAD software programs was also significant (P = 0.006). Conclusion: Repeated learning of CAD software shortened the time spent designing. While less design time on average was spent with the 3DS CAD than with the EXO CAD, the EXO CAD showed better results in terms of learning rate according to learning effect.