• Title/Summary/Keyword: Abutments

Search Result 424, Processing Time 0.027 seconds

Differences in percussion-type measurements of implant stability according to height of healing abutments and measurement angle (임플란트 healing abutment 높이와 타진각도에 따른 타진방식 임플란트 안정성 측정기기의 수치 차이)

  • Park, Yang-Hoon;Leesungbok, Richard;Lee, Suk-Won;Paek, Janghyun;Lee, Jeong-Yol
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.56 no.4
    • /
    • pp.278-286
    • /
    • 2018
  • Purpose: The purpose of this study was to evaluate the effect of healing abutment height and measurement angle on implant stability when using Periotest and AnyCheck. Materials and methods: 60 implants were placed into artificial bone blocks. After implant insertion, 2, 3, 4 and 5 mm healing abutments were installed on 15 specimens, respectively. Insertion torque value, implant stability test, Periotest value were measured. Insertion torque value was controlled between 45 - 55 Ncm. AnyCheck was used for measuring implant stability test and Periotest M was used for measuring Periotest value. Implant stability test and Periotest value were measured at the angles of 0 and 30 degrees to the horizontal plane. Measured values were analyzed statistically. Results: Insertion torque value had no significant difference among groups. When healing abutment height was higher, implant stability test and Periotest value showed lower stability. Also when measurement angle was decreased, implant stability test and Periotest value showed lower stability. Conclusion: When measuring stability of implants with percussion type devices, measured values should be evaluated considering height of healing abutments and measurement angle.

Comparative study of two CAD software programs on consistency between custom abutment design and the output (두 가지 CAD software의 맞춤형 지대주 디자인과 출력물 일치도 비교)

  • Lim, Hyun-Mi;Lee, Kyu-Bok;Lee, Wan-Sun;Son, KeunBaDa
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.34 no.3
    • /
    • pp.157-166
    • /
    • 2018
  • Purpose: This study was aimed to compare the consistency between the custom abutment design and the output in two CAD software programs. Materials and Methods: Customized abutments were designed by using 3Shape Dental System CAD software and Delta9 CAD software on a plaster model with implants (CRM STL file). After milling of the designed abutments, the abutments were scanned with a contact method scanner (Test STL file). We overlaid the Test STL file with each CRM STL file by using inspection software, and then compared the milling reproducibility by measuring the output error of the specimens from each CAD software program. Results: The Delta9 showed better milling reproducibility than 3Shape when comparing the milling errors obtained with a full scan of all specimens (P < .05) and also when comparing the axial wall region specifically according to the axial angle. With 0.9 mm marginal radius, the Delta9 showed better consistency between the design and the output than 3Shape (P < .05). While, anti-rotation form had no significant difference in error between the two systems. When cumulative errors were compared, the Delta9 showed better milling reproducibility in almost cases (P < .05). Conclusion: Delta9 showed a significantly smaller error for most of the abutment design options. This means that it is possible to facilitate generation of printouts with reliable reproducibility and high precision with respect to the planned design.

FINITE ELEMENT ANALYSIS OF STRESSES INDUCED BY OSSEOINTEGRATED PROSTHESES WITH OR WITHOUT CONNECT10N BETWEEN NATURAL TOOTH AND OSSEOINTEGRATED ABUTMENTS (골 유착성 임프란트 보철수복시 자연지대치와의 고정유무에 따른 유한요소법적 응력분석)

  • Ko, Heon-Ju;Chung, Chae-Heon
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.29 no.2
    • /
    • pp.147-160
    • /
    • 1991
  • The purpose of this study was to examine, by the method of finite element analysis, how implant geometry with or without connection between natural tooth and osseointegrated abutments affected the stress distribution in surrounding bone and osseointegrated prosthesis. The mandibular first and second molars were removed and the two osseointegrated implants were placed in the first and second molar sites. Stress analysis induced by prostheses with connection(Model A)or without connection(Model B) between natural tooth(second bicuspid) and two osseointegrated abutments(first molar and second molar) was performed under vertical point load(Load P1) or distributed point load(Load P2). The results were as follows; 1. Under vertical point load, mesial tilting was shown in both Model A and Model B and inferior displacement of Model A was greater than that of Model B in the second bicuspid. 2. Under vortical point load, the first and second molars showed mesial tilting in both Model A and Model B, and inferior displacement of them was similar in Model A and Model B and was less than that of the second bicuspid. 3. Under distributed point load, mesial displacement was shown in Model A and Model B and inferior displacement of Model A was less than that of Model B in the second bicuspid. 4. Under distributed point load, mesial tilting was shown and inferior displacement of Model A was similar to that of Model B in the first and second molars. 5. In Model A under vertical point load, high stress was concentrated in the corneal portion of first molar and distributed throughout the second molar and the second bicuspid, and the stress distribution of the second molar was greater than that of the second bicuspid. 6. In Model B under vertical point load, high stress was concentrated in the coronal and mesio-cervical portion of the first molar. 7. In Model A under distributed point load, high stress was concentrated in the mesio-cervical portion of the first molar and evenly distributed throughout the second molar and the second bicuspid. 8. In Model B under distributed point load, high stress was concentrated in the disto-cervical portion of the second bicuspid and evenly distributed throughout the first and second molars.

  • PDF

The Effect of Types of Abutment and Dynamic Loading on Microgap between Implant Fixture and Abutment (임플란트 지대주 종류와 동적하중이 고정체와 지대주의 미세간극에 미치는 영향)

  • Oh, Byung-Doo;Choi, Yu-Sung;Shin, Soo-Yeon
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.26 no.4
    • /
    • pp.389-403
    • /
    • 2010
  • Titanium and gold-alloy abutments have been used for a long-time in the clinical situations, but the use of zirconia abutments also increased. This study was designed to compare and evaluate the microgap differences according to types of abutment and dynamic loading. Titanium abutment, zirconia abutment and gold-alloy abutment (UCLA plastic) were connected into titanium implants of external hexagonal structure US II ${\phi}$ $3.75{\times}11.5$ mm (Osstem Co., Seoul, Korea) with the tightening torque of 30 Ncm. A sine type dynamic loading of 25-250 N and $30^{\circ}$ inclination from long axis was applied for $10^5$ times. Using the SEM both before and after the loadings, implant-abutment interfaces were analyzed on the labial, palatal, mesial and distal surface. The microgaps before and after the loading were compared, no statistically significant difference was observed caused by the dynamic loading on the labial, palatal, mesial or distal surface. Statistically significant difference was observed between UCLA and titanium group and between UCLA and zirconia group on both before and after the loading(p<0.05). No statistically significant difference was found between titanium and zirconia group. Loadings for $10^5$ times did not show significant effect to the microgaps between implants and abutments.

Variation of Seismic Behavior of Continuous Skew Plate Girder Bridges According to the Arrangement of Bearings (받침배치에 따른 연속 플레이트 거더 사교의 지진거동 변화)

  • Moon, Seong Kwon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.5
    • /
    • pp.124-135
    • /
    • 2011
  • The capacity of bearings installed at abutments and piers for continuous bridges is usually determined by the magnitude of the maximum vertical reaction at each support and the capacity of bearings placed at piers is higher than that at abutments. In this study, the possibility of the improved seismic performance of base-isolated continuous skew bridges was investigated by analysing the variation of the seismic behavior of them according to three arrangements of bearings. Based on the conventional arrangement of bearings(Case A), three arrangements of bearings such as Case A, Case B and Case C were selected considering the variation of the horizontal stiffness of the lead rubber bearing(LRB) installed at the pier. The seismic behavior of the total 36 skew bridges was investigated by conducting the response spectrum analysis using the hybrid response spectrum considered the effect of LRB's damping. Results of analyses show that a more desirable seismic behavior of base-isolated continuous skew bridges can be obtained by reducing the magnitude of the horizontal stiffness of LRB placed at the pier to similar to or less than that of LRB installed at abutments. The variation of LRB's stiffness at the pier brings about period elongation and the change of mode shapes of base-isolated skew bridges and results in the reduction of the total base shear, the maximum base shear at the pier and the girder stresses. Although positive effects on the seismic behavior of base-isolated skew bridges caused by the change of arrangement of bearings decreased slighty with an increase in the flexibility of the substructure, the proposed arrangements of bearings bring about the improved seismic performance of base-isolated continuous skew plate girder bridges with less than 10m height of piers.

PHOTOELASTIC STRESS ANALYSIS OF IMPLANT SUPPORTED FIXED PROSTHESES WITH DIFFERENT PLACEMENT CONFIGURATIONS IN MANDIBULAR POSTERIOR REGION (하악 구치부에서 임플랜트 배열방식에 따른 임플랜트지지 고정성 국소의치의 광탄성 응력 분석)

  • Cho Hye-Won;Kim Nan-Young;Kim Yu-Lee
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.43 no.1
    • /
    • pp.120-131
    • /
    • 2005
  • Statement of problem. More than 70% of patients who need the implant supported restoration are parially edentulous. The principles of design for implant supported fixed partial denture in mandibular posterior region are many and varied. Jurisdiction for their use is usually based on clinical evaluation. There are several areas or interest regarding the design of implant supported fixed partial denture in mandibular posterior region. 1) Straight and tripod configuration in implant placement, 2) Two restoration types such as individualized and splinted restorations. Purpose. The purpose of this study was to compare the amount and distribution of stress around the implant fixtures placed in the mandibular posterior region with two different arrangements and to evaluate the effects of splinting using the photoelastic stress analysis. Material & methods. 1) Production of study model: Mandibular partially edentulous model was waxed-up and duplicated with silicone and two models were poured in stone. 2) Fixture installation and photoelastic model construction: Using surveyor(Ney, USh), 3 fixtures(two 4.0 $\times$13 mm, one 5.0$\times$10 mm, Lifecore, USA) were insta)led in straight & tripod configurations. Silicone molds were made and poured in photoelastic resin (PL-2. Measurements group, USA). 3) Prostheses construction: Four 3-unit bridges (Type III gold alloy, Dongmyung co., Korea) were produced with nonhexed and hexed UCLA abutments and fitted with conventional methods. The abutments were tightened with 30 Ncm torque and the static loads were applied at 12 points of the occlusal surface. 4) Photoelastic stress analysis : The polarizer analyzer system with digital camera(S-2 Pro, Fujifilm, Japan) was used to take the photoelastic fringes and analysed using computer analysis program. Results. Solitary hexed UCLA restoration developed different stress patterns between two implant arrangement configurations, but there were no stress transfer to adjacent implants from the loaded implant in both configurations. However splinted restorations showed lesser amount of stresses in the loaded implants and showed stress transfer to adjacent implants in both configurations. Solitary hexed UCLA restoration with tripod configuration developed higher stresses in anterior and middle implants under loading than implants with straight configurations. Splintied 3 unit fixed partial dentures with tripod configuration showed higher stress development in posterior implant under loading but there were no obvious differences between two configurations. Conclusions. The tripod configuration of implant arrangement didn't show any advantages over the straight configuration. Splinting of 3 unit bridges with nonhexed UCLA abutments showed less stress development around the fixtures. Solitary hexed UCLA restoration developed tilting of implant fixture under offset loads.

Implant prosthesis for fully edentulous patients using intra-oral scanning and abutment merging technique: A case report (무치악 환자에서 구강 스캔과 지대주 중첩을 이용한 임플란트 보철수복 증례)

  • Hwang, Chan-Hyeon;Jeong, Seung-Mi;Kim, Yong-Jun;Kim, Kyeong-Hee;Fang, Jeong-Whan;Kim, Dae-Hwan;Choi, Byung-Ho
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.55 no.1
    • /
    • pp.61-70
    • /
    • 2017
  • In this case, the impression surface of the existing denture was scanned and was inverted three-dimensionally to express the residual ridge form. Implant planning was performed on the superimposed data of the CT with the scanned image of the denture with radiopaque markers attached. At the day of surgery, customized abutments fabricated in accordance with the form of the gingival margin were linked with fixtures and temporary restorations were set. In the process of fabricating the final prosthesis after the osseointegration of implant fixture, the intraoral scan images at abutment level were merged with images of the abutments scanned and stored before implant surgery. By fabricating the final prosthesis with the abutments obtained by merging can increase the marginal fitness of the final prosthesis and simplify the clinical process.

Influence of Implant Abutment Systems on Detorque Value and Screw Joint Stability (임플랜트 지대주 종류가 나사풀림력과 연결부의 안정성에 미치는 영향)

  • Bae, Byung-Ryong;Choi, Yu-Sung;Cho, In-Ho
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.26 no.2
    • /
    • pp.97-109
    • /
    • 2010
  • Purpose : This study was designed to evaluate the influence of implant abutment materials on detorque value and screw joint stability before and after dynamic fatigue test. Materials & Methods : The external hexagonal fixture and three different groups of abutment (titanium abutments, zirconia abutments, and UCLA abutments) were used. The detorque value before loading and after loading (cyclic loading up to $10^5$ cycles) of the abutment screw were measured. Result : 1. There was no significant difference in detorque value before loading among the each group. 2. There was no significant difference in detorque value after loading among the each group. 3. Detorque values before and after cyclic loading in each group were not significantly different. 4. There was no significant difference in loss percentage of removal torque before loading among the each group. 5. There was no significant difference in loss percentage of removal torque after loading among the each group. 6. There was no significant difference in loss percentage of removal torque according to loading among the each group. Conclusion : Short term screw loosening of three types of abutment was not significantly different. When bite force was applied, there was no significant difference in screw loosening between before loading and after loading.

Bridge Foundation and Scour (교량기초와 세굴)

  • 곽기석
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.11a
    • /
    • pp.168-187
    • /
    • 2002
  • Scour is the physical or chemical attack of flowing water which excavates and carries away material from stream beds and banks. Especially, hydraulic structures such as bridge piers and abutments placed in the channel causes the changes of the flow pattern like acceleration, the formation of vortices, and scour around the structures. Channel scour, especially bridge pier scour is the leading cause of bridge failures. It is very important to apply appropriate methods for both of scour analysis and protection. In this paper, several methods world-widely used for bridge scour analysis and protection are introduced and compared.

  • PDF

In-Site Measurement and Analysis of Heat of Hydration for Kumdang Bridge (금당교 교대기초 수화열 계측 및 해석)

  • 안상구;이필구;차수원
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.363-368
    • /
    • 2001
  • Abutments in Kumdang bridge are massive concrete structures of which total height is l0m, length is 30m, and width is 7m. Therefore, there is every probability that early age thermal cracking such as hydration heat occur. We measure heat of hydration, strains of rebar, and stresses of concrete abutment during construction. Using analysis of measuring data, we examine thermal stresses, and make use of results as method which control thermal cracking. Finally, we develope thermal stress analysis program which have pre/post processor to be easy of accessing and the usefulness of that is estimated through comparison of results.

  • PDF