• Title/Summary/Keyword: Abutment screw length

Search Result 39, Processing Time 0.029 seconds

Long-term effect of implant-abutment connection type on marginal bone loss and survival of dental implants

  • Young-Min Kim;Jong-Bin Lee;Heung-Sik Um;Beom-Seok Chang;Jae-Kwan Lee
    • Journal of Periodontal and Implant Science
    • /
    • v.52 no.6
    • /
    • pp.496-508
    • /
    • 2022
  • Purpose: This study aimed to compare the long-term survival rate and peri-implant marginal bone loss between different types of dental implant-abutment connections. Methods: Implants with external or internal abutment connections, which were fitted at Gangneung-Wonju National University Dental Hospital from November 2011 to December 2015 and followed up for >5 years, were retrospectively investigated. Cumulative survival rates were evaluated for >5 years, and peri-implant marginal bone loss was evaluated at 1- and 5-year follow-up examinations after functional loading. Results: The 8-year cumulative survival rates were 93.3% and 90.7% in the external and internal connection types, respectively (P=0.353). The mean values of marginal bone loss were 1.23 mm (external) and 0.72 mm (internal) (P<0.001) after 1 year of loading, and 1.20 mm and 1.00 mm for external and internal abutment connections, respectively (P=0.137) after 5 years. Implant length (longer, P=0.018), smoking status (heavy, P=0.001), and prosthetic type (bridge, P=0.004) were associated with significantly greater marginal bone loss, and the use of screw-cement-retained prosthesis was significantly associated (P=0.027) with less marginal bone loss. Conclusions: There was no significant difference in the cumulative survival rate between implants with external and internal abutment connections. After 1 year of loading, marginal bone loss was greater around the implants with an external abutment connection. However, no significant difference between the external and internal connection groups was found after 5 years. Both types of abutment connections are viable treatment options for the reconstruction of partially edentulous ridges.

Finite element analysis on the stress of supporting bone by diameters and lengths of dental implant fixture (유한요소법을 이용한 치과 임플란트 고정체의 직경과 길이에 따른 지지골의 응력 분석)

  • Lee, Myung-Kon
    • Journal of Technologic Dentistry
    • /
    • v.38 no.3
    • /
    • pp.151-156
    • /
    • 2016
  • Purpose: The dental implant should be enough to endure chewing load and it's required to have efficient design and use of implant to disperse the stress into bones properly. This study was to evaluate the stress distribution on a supporting bone by lengths and diameters of the implant fixture. Methods: The modeling and analysis of stress distribution was used for the simple molar porcelain crown model by Solidworks as FEM program. It was designed on applying with tightening torque of 20 Ncm of a abutment screw between a cement retained crown abutment and a fixture. The fixtures of experimental model used 10, 13mm by length and 4, 5mm by diameter. A external vertical loading on the two buccal cusps of crown and performed finite element analysis by 100 N. Results: The maximum von Mises stress(VMS) of all supporting bone models by fixture length and diameter were concentrated on the upper side of supporting compact bone. The maximum stress of each model under vertical load were 164.9 MPa of M410 model, and 141.2 MPa of M413 model, 54.3 MPa of M510 model, 53.6 MPa of M513 model. Conclusion: The stress reduction was increase of fixture's diameter than it's length. So it's effective to use the wider fixture as possible to the conditions of supporting bone.

Effect of various abutment systems on the removal torque and the abutment settling in the conical connection implant systems (원추형 연결 임플란트에서 지대주 종류에 따른 나사풀림과 침하현상에 관한 연구)

  • Lee, Jin-Seon;Lee, Joon-Seok
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.50 no.2
    • /
    • pp.92-98
    • /
    • 2012
  • Purpose: The aim of this study was to evaluate the effects of different abutment materials on abutment screw loosening and settling-down effect in conical connection type implant system. Materials and methods: Three types of abutment, cementation, gold UCLA, and metal UCLA abutment were used. Two UCLA groups were fabricated in a similar pattern to cementation abutment. Type III gold alloy and Nickel-Chromium alloy was used for casting gold UCLA abutment and metal UCLA abutment, respectively. Fixture and abutment were tightened to 30 Ncm by using digital torque controller and re-tightening was conducted with same force after 10 minutes. Digital torque gauge was used to measure loosening torque and fixture/abutment length was measured by digital micrometer. Dynamic loads between 25 N and 250 N were applied with $0^{\circ}$ angle to the abutment axis. After loading, fixture/abutment length was re-measured and amount of settlement was calculated. Loosening torque value was also measured for comparison Results: All three groups showed significant differences of length when comparing before and after loading, but there was no significant difference of settling amount in all groups. Loosening torque values were significantly decreased when comparing before and after loading in all groups($P$<.05). However, there was no significant difference in loss of loosening torque values when compared to groups. Conclusion: In internal conical connection type implants, dynamic load affected on settlement and loosening torque of implant, but there was no differences between abutments materials. Likewise gold UCLA abutment, metal UCLA abutment might be able to withstand functional load.

Stability of implant screw joint (임플란트 나사의 안정성)

  • Chung, Chae-Heon;Kwak, Jong-Ha;Jang, Doo-IK
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.19 no.2
    • /
    • pp.125-137
    • /
    • 2003
  • The use of screw-retaind prosthesis on an osseointegrated implant is a popular treatment modality offering relative ease in the removal of the restoration. One of the complications associated with this modality is the loosening of the abutment and coping screws. Loosening of the screws results in patient dissatisfaction, frustration to the dentist and, if left untreated, component fracture. There are several factors which contribute to the loosening of implant components which can be controlled by the restorative dentist and lab technician. This article offers pratical solutions to minimize this clinical problem and describes the factors involved in maintaining a stable screw joint assembly. To avoid joint failure, adherence to specific clinical, as well as mechanical, parameters is critical. With respect to hardware, optimal tolerance and fit, minimal rotational play, best physical properties, a predictable interface, and optimal torque application are mandatory. In the clinical arena, optimal implant distribution; load in line with implant axis; optimal number, diameter, and length of implants; elimination of cantilevers; optimal prosthesis fit; and occlusal load control are equally important.

Mechanical and biological complication rates of the modified lateral-screw-retained implant prosthesis in the posterior region: an alternative to the conventional Implant prosthetic system

  • Lee, Jae-Hong;Lee, Jong-Bin;Kim, Man-Yong;Yoon, Joon-Ho;Choi, Seong-Ho;Kim, Young-Taek
    • The Journal of Advanced Prosthodontics
    • /
    • v.8 no.2
    • /
    • pp.150-157
    • /
    • 2016
  • PURPOSE. The modified lateral-screw-retained implant prosthesis (LSP) is designed to combine the advantages of screw- and cement-retained implant prostheses. This retrospective study evaluated the mechanical and biological complication rates of implant-supported single crowns (ISSCs) inserted with the modified LSP in the posterior region, and determined how these complication rates are affected by clinical factors. MATERIALS AND METHODS. Mechanical complications (i.e., lateral screw loosening [LSL], abutment screw loosening, lateral screw fracture, and ceramic fracture) and biological complications (i.e., peri-implant mucositis [PM] and peri-implantitis) were identified from the patients' treatment records, clinical photographs, periapical radiographs, panoramic radiographs, and clinical indices. The correlations between complication rates and the following clinical factors were determined: gender, age, position in the jaw, placement location, functional duration, clinical crown-to-implant length ratio, crown height space, and the use of a submerged or nonsubmerged placement procedure. RESULTS. Mechanical and biological complications were present in 25 of 73 ISSCs with the modified LSP. LSL (n=11) and PM (n=11) were the most common complications. The incidence of mechanical complications was significantly related to gender (P=.018). The other clinical factors were not significantly associated with mechanical and biological complication rates. CONCLUSION. Within the limitations of this study, the incidence of mechanical and biological complications in the posterior region was similar for both modified LSP and conventional implant prosthetic systems. In addition, the modified LSP is amenable to maintenance care, which facilitates the prevention and treatment of mechanical and biological complications.

The non-linear FEM analysis of different connection lengths of internal connection abutment (내측 연결형 임플란트 지대주의 체결부 길이 변화에 따른 비선형 유한요소법적 응력분석)

  • Lee, Yong-Sang;Kang, Kyoung-Tak;Han, Dong-Hoo
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.54 no.2
    • /
    • pp.110-119
    • /
    • 2016
  • Purpose: This study is aimed to assess changes of stress distribution dependent on different connection lengths and placement of the fixture top relative to the ridge crest. Materials and methods: The internal-conical connection implant which has a hexagonal anti-rotation index was used for FEM analysis on stress distribution in accordance with connection length of fixture-abutment. Different connection lengths of 2.5 mm, 3.5 mm, and 4.5 mm were designed respectively with the top of the fixture flush with residual ridge crest level, or 2 mm above. Therefore, a total of 6 models were made for the FEM analysis. The load was 170 N and 30-degree tilted. Results: In all cases, the maximum von Mises stress was located adjacent to the top portion of the fixture and ridge crest in the bone. The longer the connection length was, the lower the maximum von Mises stress was in the fixture, abutment, screw and bone. The reduction rate of the maximum von Mises stress depending on increased connection length was greater in the case of the fixture top at 2 mm above the ridge crest versus flush with the ridge crest. Conclusion: It was found that the longer the connection length, the lower the maximum von Mises stress appears. Furthermore, it will help prevent mechanical or biological complications of implants.

Finite Element Stress Analysis of Implant Prosthesis according to Position and Direction of Load (하중의 위치 및 경사에 따른 임플랜트 보철의 유한요소법적 응력분석)

  • Bae, Sook-Jin;Chung, Chae-Heon;Jeong, Seung-Mi
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.19 no.4
    • /
    • pp.257-268
    • /
    • 2003
  • The purpose of this study was to assess the loading distributing characteristics of implant prosthesis according to position and direction of load, under vertical and inclined loading using FEA analysis. The finite element model was designed according to standard fixture (4.1mm restorative component x 11.5mm length). The crown for mandibular first molar was made using UCLA abutment. Each three-dimensional finite element model was created with the physical properties of the implant and surrounding bone. This study simulated loads of 200N at the central fossa in a vertical direction (loading condition A), 200N at the outside point of the central fossa with resin filling into screw hole in a vertical direction (loading condition B), 200N at the centric usp in a $15^{\circ}$ inward oblique direction (loading condition C), 200N at the in a $30^{\circ}$ inward oblique direction (loading condition D) or 200N at the centric cusp in a $30^{\circ}$ outward oblique direction (loading condition E) individually. Von Mises stresses were recorded and compared in the supporting bone, fixture, and abutment screw. The following results have been made based on this study: 1. Stresses were concentrated mainly at the ridge crest around implant in both vertical and oblique loading but stresses in the cancellous bone were low in both vertical and oblique loading. 2. Bending moments resulting from non-axial loading of dental implants caused stress concentrations on cortical bone. The magnitude of the stress was greater with the oblique loading than with the vertical loading. 3. An offset of the vertical occlusal force in the buccolingual direction relative to the implant axis gave rise to increased bending of the implant. 4. The relative positions of the resultant line of force from occlusal contact and the center of rotation seems to be more important. 5. The magnitude of the stress in the supporting bone, fixture and abutment screw was greater with the outward oblique loading than with the inward oblique loading and was the greatest under loading at the centric cusp in a $30^{\circ}$ outward oblique direction. Conclusively, this study provides evidence that bending moments resulting from non-axial loading of dental implants caused stress concentrations on cortical bone. But it seems to be more important that how long is the distance from center of rotation of the implant itself to the resultant line of force from occlusal contact(leverage). The goal of improving implants should be to avoid bending of the implant.

STRESS DISTRIBUTION PATTERN OF THE DIFFERENT DIAMETER AND LENGTH OF SHORT IMPLANTS ACCORDING TO THE BONE QUALITY : 3-D FINITE ELEMENTS ANALYSIS (상이한 골질과 제원에 따른 짧은 임프란트의 응력 분포: 3차원 유한 요소 분석)

  • Kim, Han-Koo;Kim, Chang-Hyen;Pyo, Sung-Woon
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.31 no.2
    • /
    • pp.116-126
    • /
    • 2009
  • The use of short implants has been accepted risky from biomechanical point of view. However, short implants appear to be a long term viable solution according to recent clinical reports. The purpose of this study was to investigate the effect of different diameter and length of implant size to the different type of bone on the load distribution pattern. Stress analysis was performed using 3-dimensional finite element analysis(3D-FEA). A three-dimensional linear elastic model was generated. All implants modeled were of the various diameter(${\phi}4.0$, 4.5, 5.0 and 6.0 mm) and varied in length, at 7.0, 8.5 and 10.0 mm. Each implant was modeled with a titanium abutment screw and abutment. The implants were seated in a supporting D2 and D4 bone structure consisting of cortical and cancellous bone. An amount of 100 N occlusal load of vertical and $30^{\circ}$ angle to axis of implant and to buccolingual plane were applied. As a result, the maximum equivalent stress of D2 and D4 bones has been concentrated upper region of cortical bone. As the width of implant is increased, the equivalent stress is decreased in cancellous bone and stress was more homogeneously distributed along the implants in all types of bone. The short implant of diameter 5.0mm, 6.0mm showed effective stress distribution in D2 and D4 bone. The oblique force of 100N generated more concentrated stress on the D2 cortical bone. Within the limitations of this study, the use of short implant may offer a predictable treatment method in the vertically restricted sites.

A COMPARISON OF LOAD TRANSFER IN SCREW- AND CEMENT-RETAINED IMPLANT FIXED PARTIAL DENTURE DESIGNS (임플랜트 상부 보철물의 고정 방식에 따른 힘의 분포에 관한 연구 : 나사 유지형 대 시멘트 유지형)

  • Lee Joo-Hee;Kim Chang-Whe;Kim Yung-Soo
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.39 no.2
    • /
    • pp.125-145
    • /
    • 2001
  • To compare the stress distribution patterns between cement-retained and screw-retained implant supported fixed prostheses according to four different abutment types, a three dimensional finite element analysis was performed. The hypothetical three unit fixed partial denture case was modelled on the three implants(10mm length and 3.75 diameter) in mandibular bone. Four angles of implantation(vertical, 10, 15 and 20 degree inclined mesially) were created and three different directions of force (vertical, oblique, horizontal) were applied at the center of the second premolar and distal end of the first molar for each cases. Within the limits of this study, the results were as follows, 1. In vertically installed cases, the more stress was concentrated at upper components, but mesially inclined cases, the more stress was concentrated at cortical bone. 2, The more inclined mesially the more stress was observed, especially at cortical bone. 3. The cement-retained models showed lower principal stress and more even stress distribution than the screw-retained models. 4. The similar stress distribution pattern was showed in model 1 and model 2, model 3 and model 4. 5. The more stress was observed when the loads were applied at the distal end of 1st molar than the center of 2nd premolar. 6 The fixture and the model as a whole, lesser stress values were observed when vertical loads were applied as compared to horizontal and oblique loads.

  • PDF

Effects of implant tilting and the loading direction on the displacement and micromotion of immediately loaded implants: an in vitro experiment and finite element analysis

  • Sugiura, Tsutomu;Yamamoto, Kazuhiko;Horita, Satoshi;Murakami, Kazuhiro;Tsutsumi, Sadami;Kirita, Tadaaki
    • Journal of Periodontal and Implant Science
    • /
    • v.47 no.4
    • /
    • pp.251-262
    • /
    • 2017
  • Purpose: The purpose of this study was to investigate the effects of implant tilting and the loading direction on the displacement and micromotion (relative displacement between the implant and bone) of immediately loaded implants by in vitro experiments and finite element analysis (FEA). Methods: Six artificial bone blocks were prepared. Six screw-type implants with a length of 10 mm and diameter of 4.3 mm were placed, with 3 positioned axially and 3 tilted. The tilted implants were $30^{\circ}$ distally inclined to the axial implants. Vertical and mesiodistal oblique ($45^{\circ}$ angle) loads of 200 N were applied to the top of the abutment, and the abutment displacement was recorded. Nonlinear finite element models simulating the in vitro experiment were constructed, and the abutment displacement and micromotion were calculated. The data on the abutment displacement from in vitro experiments and FEA were compared, and the validity of the finite element model was evaluated. Results: The abutment displacement was greater under oblique loading than under axial loading and greater for the tilted implants than for the axial implants. The in vitro and FEA results showed satisfactory consistency. The maximum micromotion was 2.8- to 4.1-fold higher under oblique loading than under vertical loading. The maximum micromotion values in the axial and tilted implants were very close under vertical loading. However, in the tilted implant model, the maximum micromotion was 38.7% less than in the axial implant model under oblique loading. The relationship between abutment displacement and micromotion varied according to the loading direction (vertical or oblique) as well as the implant insertion angle (axial or tilted). Conclusions: Tilted implants may have a lower maximum extent of micromotion than axial implants under mesiodistal oblique loading. The maximum micromotion values were strongly influenced by the loading direction. The maximum micromotion values did not reflect the abutment displacement values.