• Title/Summary/Keyword: Absorption cross section

Search Result 130, Processing Time 0.036 seconds

Measurements of the Benzene Absorption Cross Section in the Range of Ultra Violet (UV) (UV 영역에서 벤젠의 흡수 단면적의 측정)

  • Lee, J.S.;Ryu, S.Y.;Kim, H.H.;Woo, J.C.;Kim, K.B.
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.22 no.6
    • /
    • pp.922-928
    • /
    • 2006
  • An absolute absorption cross section of benzene was measured with a spectrometer system including a mono-chrometer and a grating in the wavelength region of $240{\sim}280nm$ under the atmospheric pressure and room temperature in the laboratory. A certificated reference benzene gas ($98{\mu}mol/mol$ in $N_2$) was used to measure its absorption cross section. A 710 mm cell with a quartz window and a 150 W Xe arc lamp were employed. The magnitude of absorption cross section of $1.41{\times}10^{-18}cm^2$ was lower than that of the reference spectra ($2.5{\times}10^{-18}cm^2$) of high resolution spectrometer, Total measurement uncertainty was estimated to be 4.0%.

Spectroscopic Study of the Ã1A" - X~1A' System of CHBr

  • Shin, Seung-Keun;Park, Seung-Min
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.3
    • /
    • pp.905-908
    • /
    • 2011
  • We report fluorescence excitation and emission spectra of the CHBr molecule generated via pyrolysis of $CH_3Br$ in a molecular beam experiment. The 193 nm attenuation cross sections were estimated from the reduction of the CHBr signal as a function of the excimer laser fluence. The derived 193 nm absorption cross section for CHBr [$(3.24{\pm}0.59){\times}10^{-17}\;cm^2$] is slightly higher than the absorption cross section previously determined for CHCl [$(2.6{\pm}0.8){\times}10^{-17}\;cm^2$], but the difference is within the estimated uncertainties in the measured cross section.

Development of Al Crash Box for High Crashworthiness Enhancement (고충돌에너지 흡수용 알루미늄 크래쉬박스 개발)

  • Yoo, J.S.;Kim, S.B.;Lee, M.Y.;Huh, H.
    • Transactions of Materials Processing
    • /
    • v.17 no.3
    • /
    • pp.182-188
    • /
    • 2008
  • Crash box is one of the most important automotive parts for crash energy absorption and is equipped at the front end of the front side member. The specific characteristics of aluminum alloys offer the possibility to design cost-effective lightweight structures with high stiffness and excellent crash energy absorption potential. This study deals with crashworthiness of aluminum crash box for an auto-body with the various types of cross section. For aluminum alloys, A17003-T7 and A17003-T5, the dynamic tensile test was carried out to apply for crash analysis at the range of strain from 0.003/sec to 200/sec. The crash analysis and the crash test were carried out for three cross sections of rectangle, hexagon and octagon. The analysis results show that the octagon cross section shape with A17003-T5 has higher crashworthiness than other cross section shapes. The effect of rib shapes in the cross section is important factor in crash analysis. Finally, new configuration of crash box with high crash energy absorption was suggested.

Flow Characteristics of Driven Nozzle Position Change in the Connected Injection Pump (분사펌프에 연결된 구동관로 위치변화에 따른 유동특성)

  • Sohn, Hyun-Chull;Park, Gil-Moon;Go, Hyun-Sun;Lee, Haeng-Nam
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.4
    • /
    • pp.215-224
    • /
    • 2009
  • Analysis for various driven nozzle position changes. The analysis was done for different Reynolds number in entrance region of jet-pump and for several diameter ratios of driven nozzle. (1) The largest absorption energy was found at the point s=1 in condition of diameter ratio 1:3.21 and point s=0.5 in condition of diameter ratio 1:2.25. (2) The absorption energy was not related to the change of entrance velocity and the driven nozzle position having the largest absorption energy was function for cross section ratio. (3) As the position of driven nozzle moves to the downstream, the absorption energy gets weaker. Because the energy from swirl was lost at the cross section gets smaller. (4) As the position of driven nozzle moves to the downstream, the injection energy leans to the upper direction wall and as the Reynolds number increase, the lean phenomenon is more distinct. (5) The flow quantity of driven nozzle, the diameter ratio 1:3.21, was 32% higher than that of 1 : 2.25 and as the inlet velocity gets faster the efficiency decreased. And as the cross section of the driven nozzle increases.

Estimation of Neutron Absorption Ratio of Energy Dependent Function for $^{157}Gd$ in Energy Region from 0.003 to 100 eV by MCNP-4B Code

  • Lee, Sam-Yol
    • Journal of the Korean Society of Radiology
    • /
    • v.3 no.3
    • /
    • pp.23-25
    • /
    • 2009
  • Gd-157 material has very large neutron capture cross section in the thermal region. So it is very useful to shield material for thermal neutrons. Futhermore, in the neutron capture experiment and calculation, the neutron absorption and scattering are very important. Especially these effects are conspicuous in the resonance energy region and below the thermal energy region. In the case of very narrow resonance, the effect of scattering is to be more considerable factor. In the present study, we obtained energy dependent neutron absorption ratios of natural indium in energy region from 0.003 to 100 keV by MCNP-4B Code. The coefficients for neutron absorption was calculated for circular type and 1 mm thickness. In the lower energy region, neutron absorption is larger than higher region, because of large capture cross section (1/v). Furthermore it seems very different neutron absorption in the large resonance energy region. These results are very useful to decide the thickness of sample and shielding materials.

  • PDF

Investigation of Absorption Cross-Section Effects on the Formaldehyde Column Density Retrieval from Direct Sun Measurement (태양 직달광 관측 자료로부터 포름알데히드 연직 농도 산출 시 흡수단면적이 미치는 영향 연구)

  • Gyeong Park;Jeonghyeon Park;Hanlim Lee
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.5_1
    • /
    • pp.551-561
    • /
    • 2023
  • In this study, we investigated the effects of the spectral fitting window and absorption cross-section on the retrieval of the formaldehyde (HCHO) slant column density (SCD) from the direct-sun measurement of pandora spectrometer system using differential optical absorption spectroscopy (DOAS). Pandora Level 1 data observed at Yonsei University in Seoul from October 12 to 31, 2022 were used. The HCHO column density was retrieved under eight ranges including the spectral fitting window used in the Second Cabauw Intercomparison campaign for Nitrogen Dioxide measuring Instruments (CINDI-2) and seven types of absorption cross-section composition. The spectral fitting window was selected from 336.5 to 359.0 nm with minimum residual and HCHO SCD error. When the nitrogen dioxide (NO2) absorption cross-section at 220 K was added to the cross-section composition used in the CINDI-2 campaign among seven types, the residual and HCHO SCD error were the smallest and the HCHO column density wasstably retrieved. The average HCHO SCD with the highest retrieval accuracy and the values retrieved under other conditions differed from a minimum of 4% to a maximum of 40%.

Calculating the Threshold Energy of the Pulsed Laser Sintering of Silver and Copper Nanoparticles

  • Lee, Changmin;Hahn, Jae W.
    • Journal of the Optical Society of Korea
    • /
    • v.20 no.5
    • /
    • pp.601-606
    • /
    • 2016
  • In this study, in order to analyze the low-temperature sintering process of silver and copper nanoparticles, we calculate their melting temperatures and surface melting temperatures with respect to particle size. For this calculation, we introduce the concept of mean-squared displacement of the atom proposed by Shi (1994). Using a parameter defined by the vibrational component of melting entropy, we readily obtained the surface and bulk melting temperatures of copper and silver nanoparticles. We also calculated the absorption cross-section of nanoparticles for variation in the wavelength of light. By using the calculated absorption cross-section of the nanoparticles at the melting temperature, we obtained the laser threshold energy for the sintering process with respect to particle size and wavelength of laser. We found that the absorption cross-section of silver nanoparticles has a resonant peak at a wavelength of close to 350 nm, yielding the lowest threshold energy. We calculated the intensity distribution around the nanoparticles using the finite-difference time-domain method and confirmed the resonant excitation of silver nanoparticles near the wavelength of the resonant peak.

Photophysical and Electrochmical Studies of N,N-Bis (2,5-di-tert-butylphenyl) - 3,4,9,10 perylenebis (dicarboximide) (DBPI)

  • El-Hallag, Ibrahim S.;El-Daly, Samy A.
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.4
    • /
    • pp.989-998
    • /
    • 2010
  • The titled dye of DBPI gives amplified spontaneous emission (ASE) with maximum at 580 nm upon pumping by nitrogen laser (${\lambda}_{ex}\;=\;337.1\;nm$). The ground state absorption cross section (${\sigma}_A$) and emission cross section (${\sigma}_E$) as well as effective emission cross section(${\sigma}^*_E$) have been determined. The electronic absorption spectra of DBPI were measured in ethanol and tetrahydrofuran at room and low temperature. DBPI displays molecular aggregation in water. The photochemical reactivity of DBPI was also studied in carbon tetrachloride upon irradiation with 525 nm light. The electrochemical investigation of DBPI dye has been carried out using cyclic voltammetry and convolution deconvolution voltammetry combined with digital simulation technique at a platinum electrode in 0.1 mol/L tetrabutyl ammonium perchlorate (TBAP) in two different solvents acetonitrile ($CH_3CN$) and dimethylformamide (DMF). The species were reduced via consumption of two sequential electrons to form radical anion and dianion (EE mechanism). In switching the potential to positive direction, the compound was oxidized by loss of two sequential electrons, which were followed by a fast dimerization and/or aggregation process i.e $EC_{dim1}EC_{dim2}$ mechanism. The electrode reaction pathway and the chemical and electrochemical parameters of the investigated compound were determined using cyclic and convolutive voltammetry. The extracted electrochemical parameters were verified and confirmed via digital simulation method.

Development of RAM in Millimeter Wave Range for RF Stealth (RF 스텔스를 위한 밀리미터 RAM 개발)

  • Choi, Chang-Mook;Lim, Bong-Taeck;Ko, Kwang-Soob
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2009.05a
    • /
    • pp.555-558
    • /
    • 2009
  • In this paper, stealth technology is investigated with RCS(Radar Cross Section) reduction to minimize detection range of retroreflective echoes from enemy. Most RCS reduction comes from shaping. RAM(Radar Absorbing Materials) are applied only in areas where there are special problems. Therefore, we designed and fabricated a RAM that has absorption ability higher than 17 dB at 94 GHz for RF stealth in millimeter wave range. As a result, detection range of enemy can be reduced in the 62 percent range by using a developed RAM.

  • PDF