Browse > Article
http://dx.doi.org/10.3807/JOSK.2016.20.5.601

Calculating the Threshold Energy of the Pulsed Laser Sintering of Silver and Copper Nanoparticles  

Lee, Changmin (Nano Photonics Laboratory, School of Mechanical Engineering, Yonsei University)
Hahn, Jae W. (Nano Photonics Laboratory, School of Mechanical Engineering, Yonsei University)
Publication Information
Journal of the Optical Society of Korea / v.20, no.5, 2016 , pp. 601-606 More about this Journal
Abstract
In this study, in order to analyze the low-temperature sintering process of silver and copper nanoparticles, we calculate their melting temperatures and surface melting temperatures with respect to particle size. For this calculation, we introduce the concept of mean-squared displacement of the atom proposed by Shi (1994). Using a parameter defined by the vibrational component of melting entropy, we readily obtained the surface and bulk melting temperatures of copper and silver nanoparticles. We also calculated the absorption cross-section of nanoparticles for variation in the wavelength of light. By using the calculated absorption cross-section of the nanoparticles at the melting temperature, we obtained the laser threshold energy for the sintering process with respect to particle size and wavelength of laser. We found that the absorption cross-section of silver nanoparticles has a resonant peak at a wavelength of close to 350 nm, yielding the lowest threshold energy. We calculated the intensity distribution around the nanoparticles using the finite-difference time-domain method and confirmed the resonant excitation of silver nanoparticles near the wavelength of the resonant peak.
Keywords
Laser sintering; Copper nanoparticle; Silver nanoparticle; Melting temperature; Threshold energy;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 J. Perelaer, B. de Gans, and U. S. Schubert, “Ink-jet printing and microwave sintering of conductive silver tracks,” Adv. Mater. 18, 2101-2104 (2006).   DOI
2 Q. Huang, W. Shen, Q. Xu, R. Tan, and W. Song, “Room-temperature sintering of conductive Ag films on paper,” Mater. Lett. 123, 124-127 (2014).   DOI
3 J. S. Kang, H. S. Kim, J. Ryu, H. T. Hahn, S. Jang, and J. W. Joung, “Inkjet printed electronics using copper nanoparticle ink,” J. Mater. SCI-mater. EL. 21, 1213-1220 (2010).   DOI
4 T. Kumpulainen, J. Pekkanen, J. Valkama, J. Laakso, R. Tuokko, and M. Mäntysalo, “Low temperature nanoparticle sintering with continuous wave and pulse lasers,” Opt. Laser Technol. 43, 570-576 (2011).   DOI
5 J. H. Yu1, K. T. Kang, J. Y. Hwang, S. H. Lee, and H. Kang, “Rapid sintering of copper nano ink using a laser in air,” Int. J. Precis. Eng. Man. 15, 1051-1054 (2014).   DOI
6 J. Lee, B. Lee, S. Jeong, Y. Kim, and M. Lee, “Enhanced surface coverage and conductivity of cu complex ink-coated films by laser sintering,” Thin Solid Films 564, 264-268 (2014).   DOI
7 J. Guo, H. Guo, A. L. Baker, M. l. T. Lanagan, E. R. Kupp, G. L. Messing, and C. A. Randall, “Cold sintering: A paradigm shift for processing and integration of ceramics,” Angew. Chem. 128, 11629-11633 (2016).   DOI
8 H. Yu, L. He, M. Zeng, J. Liu, E. Li, X. Zhou, and S. Zhang, “Low temperature sintering of Zn1.8SiO3.8 dielectric ceramics containing 3ZnO-2B2O3 glass,” Mater. Lett. 179, 150-153 (2016).   DOI
9 I. Shishkovsky, V. Scherbakof, and I. Volyansky, “Low-dose laser sintering of cu nanoparticles on the ceramic substrate during ink-jet interconnection,” Proc. SPIE, 9065 (2014) 90650I-1-6.
10 H. S. Kim, S. R. Dhage, D. E. Shim, and H. T. Hahn, “Intense pulsed light sintering of copper nanoink for printed electronics,” Appl. Phys. A 97, 791-798 (2009).   DOI
11 Z. Z. Zhang and G. Q. Lu, “Pressure-assisted low-temperature sintering of silver paste as an alternative die-attach solution to solder reflow,” IEEE T. Electron. Pack. 25, 279-283 (2002).   DOI
12 Z. Wen, M. Zhao, and Q. Jiang, “The melting temperature of molecular nanocrystals at the lower bound of the mesoscopic size range,” J. Phys-Condens. Mat. 12, 8819-8824 (2000).   DOI
13 E. K. Yu, L. Piao, and S. H. Kim, “Sintering behavior of copper nanoparticles,” B. Korean Chem. Soc. 32, 4099-4102 (2011).   DOI
14 J. S. Kang, J. Ryu, H. S. KIM, and H. T. Hahn, “Sintering of inkjet-printed silver nanoparticles at room temperature using intense pulsed light,” J. Electron. Mater. 40, 2268-2277 (2011).   DOI
15 K. S. Moon, H. Dong, R. Maric, S. Pothukuchi, A. Hunt, Y. Li, and C. P. Wong, “Thermal behavior of silver nanoparticles for low-temperature interconnect applications,” J. Electron. Mater. 34, 168-175 (2005).   DOI
16 K. K. Nanda, “Size-dependent melting of nanoparticles: Hundred years of thermodynamic model,” Pramana – J. Phys. 72, 617-628 (2009).   DOI
17 F. A. Lindemann, “Über die Berechnung molekularer Eigenfrequenzen,” Physik. Z, 11, 609-612 (1910).
18 S. C. Hendy, “A thermodynamic model for the melting of supported metal nanoparticles,” Nanotechnology 18, 175703-1-4 (2007).   DOI
19 C. R. M. Wronski, “The size dependence of the melting point of small particles of tin,” Brit. J. Appl. Phys. 18, 1731-1737 (1967).   DOI
20 P. R. Couchman and W. A. Jesser, “Thermodynamic theory of size dependence of melting temperature in metals,” Nature 269, 481-483 (1977).   DOI
21 V. E. Ferry, J. N. Munday, and H. A. Atwater, “Design consideration for plasmonic photovoltaics,” Adv. Mater. 22, 4794-4808 (2010).   DOI
22 Q. Jiang and C. C. Yang, “Size effect on the phase stability of nanostructures,” Curr. Nanosci. 4, 179-200 (2008).   DOI
23 Q. Jiang, H. X. Shi and M. Zhao, “Free energy of crystal-liquid interface,” Acta Mater. 47, 2109-2112 (1999).   DOI
24 S. A. Maier, Plasmonics : fundamentals and applications, (Springer, Bath, UK, 2007).
25 G. P. Wiederrecht, G. A. Wurtz, and J. Hranisavljevic, “Coherent coupling of molecular excitons to electronic polarizations of noble metal nanoparticles,” Nano Lett. 4, 2121-2125 (2004).   DOI
26 N. Guo, S. A. Dibenedetto, P. Tewari, M. T. Lanagan, M. A. Ratner, and T. J. Marks, “Nanoparticle, size, shape, and interfacial effects on leakage current density, permittivity, and breakdown strength of metal oxide-polyolefin nanocomposites: experiment and theory,” Chem. Mater. 22, 1567-1578 (2010).   DOI
27 A. P. Chernyshev, “Melting of surface layers of nanoparticles: Landau model,” Mater. Chem. Phys. 112, 226-229 (2008).   DOI
28 P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370-4379 (1972).   DOI
29 A. P. Chernyshev, “Effect of nanoparticle size on the onset temperature of surface melting,” Mater. Lett. 63, 1525-1527 (2009).   DOI
30 F. P. Incropera, D. P. DeWitt, T. L. Bergaman, and A. S. Lavine, Introduction to heat transfer Fifth Ed. (John Wiley & Sons, USA, 2007).
31 K. M. Byun, “Development of nanostructured plasmonic substrates for enhanced optical biosensing,” J. Opt. Soc. Korea 14, 65-76 (2010).   DOI
32 A. D. Rakić, A. B. Djurišić, J. M. Elazar, and M. L. Majewski, “Optical properties of metallic films for vertical-cavity optoelectronic devices,” Appl. Optics 37, 5271-5283 (1998).   DOI
33 M. D. Malinsky, K. L. Kelly, G. C. Schatz, and R. P. Van Duyne, “Nanosphere lithography: effect of substrate on the localized surface plasmon resonance spectrum of silver nanoparticles,” J. Phys. Chem. B 105, 2343-2350 (2001).   DOI