• Title/Summary/Keyword: Abscission

Search Result 52, Processing Time 0.04 seconds

The Influence of Abnormally Low Temperatures on Growth and Yield of Hot Pepper(Capsicum Annum L.) (이상저온 조건이 고추의 생육 및 수량에 미치는 영향)

  • Park, Eun-Ji;Heo, You;Son, Beung-Gu;Choi, Young-Whan;Lee, Yong-Jae;Park, Young-Hoon;Suh, Jeong-Min;Cho, Jae-Hwan;Hong, Chang-Oh;Lee, Sang-Gye;Kang, Jum-Soon
    • Journal of Environmental Science International
    • /
    • v.23 no.5
    • /
    • pp.781-786
    • /
    • 2014
  • Growth and physiological disorders caused by abnormally low temperatures were evaluated in pepper, an important field crop in Korea. In addition, the effects of chemical treatment using glutamine was verified on minimizing the damages by low temperature. The growth of pepper plants in stem length and diameter was suppressed as the temperature decreased from $25^{\circ}C$, and the suppression level was the highest for plants grown for 90 days at $20^{\circ}C$. However, root growth was not affected by the different temperatures. The number of leaf and leaf area decreased at the temperatures below $25^{\circ}C$, an optimum temperature for growth. Fresh weight and dry weight decreased for plants grown at $20^{\circ}C$. Pepper fruit yield also decreased by 11% at $20^{\circ}C$ in comparison to $25^{\circ}C$. Falling blossom rate was different depending on the growth temperature, and the rate was 27.2% at $25^{\circ}C$, 35.2% at $22.5^{\circ}C$, and 41.0% at $20^{\circ}C$, indicating that falling blossom rate increased as temperature decreased. Different growth temperatures did not affected on the level of symptom of calcium deficiency and Phytopathora blight. Falling blossom was severe at abnormally low temperature of $20^{\circ}C$, but the treatment of glutamine reduced falling blossom rate and increased the yield by 7.0% as compared to control. The optimum concentration of glutamine treatment was 10 mg/L for yields.

Enzymatic characterization and Expression of 1-aminocycloprophane-1-carboxlyate deaminase from the rhizobacterium Pseudomonas flourescens

  • Lee, Gun-Woong;Ju, Jae-Eun;Kim, Hae-Min;Lee, Si-Nae;Chae, Jong-Chan;Lee, Yong-Hoon;Oh, Byung-Taek;Soh, Byoung-Yul
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2010.05a
    • /
    • pp.17-17
    • /
    • 2010
  • Ethylene, known as a stress hormone regulate wide developmental processes including germination, root hair initiation, root and shoot primordial formation and elongation, leaf and flower senescence and abscission, fruit ripening. The acceleration of ethylene biosynthesis in plant associated with environmental and biological stresses. 1-Aminocycloprophane-1-carboxlyate deaminase(ACCD) is an enzyme that cleaves ACC into and ammonia, a precursor of the plant hormone ethylene. Plant growth-promoting rhizobacteria (PGPR) having ACCD can decrease endogenous ACC level of tissue, resulting in reduced production of ethylene in plants. ACC deaminse was a key enzyme for protect stressed plants from injurious effects of ethylene. ACCD gene was encoded from Pseudomonas flourescens, PGPR and was cloned in Escherichia coli. We expressed the recombinant ACCD(rACCD) containing 357 amino acids with molecular weight 39 kDa that revealed by SDS-PAGE and western blot. The rACCD was purified by Ni-NTA purification system. The active form of rACCD having enzyme activity converted ACC to a-ketobutyrate. The optimal pH for ACC deaminase activity was pH 8.5, but no activity below pH 7.0 and a less severe tapering activity at base condition resulting in loss of activity at over pH 11. The optimal temperature of the enzyme was $30^{\circ}$ and a slightly less severe tapering activity at 15 - 30$^{\circ}$, but no activity over $35^{\circ}$. P. flourescens ACC deaminase has a highly conserved residue that plays in allowing substrate accessibility to the active sites. The enzymatic properties of this rACCD will provide an important reference for analysis of newly isolated ACCD and identification of newly isolated PGPR containing ACCD.

  • PDF

Effects of Streptomycin Sulfate on Parthenocarpy Induction in Grapes (Streptomycin을 이용(利用)한 포도(葡萄)의 단위결과(單爲結果) 유기(誘起)에 관(關)한 연구(硏究))

  • Im, Eum Lyang;Lee, Jae Chang
    • Korean Journal of Agricultural Science
    • /
    • v.12 no.1
    • /
    • pp.37-46
    • /
    • 1985
  • Several seeded cultivars of Vitis labruscana showing various responses to GA-induced seedlessness were tested to study the effects of streptomycin sulfate on induction of parthenocarpy. The results were summarized as follows. 1. Prebloom dipping of streptomycin sulfate at 200 ppm induced 90~100 % parthenocarpy in 'Schuyler', 'Delaware', 'Ohira-Dela.' and 'Tanored' cultivars and also stimulated maturity but did not show any toxic effects. 2. In most cultivars, the addition of 25 ppm GA to streptomycin tended to increase berry setting and induction of parthenocarpy. 3. Dipping of strepto mycin alone in 'Campbell Early' severely induced berry abscission but the addition of calcium acetate or BA to streptomycin slightly increased setting of berries. 4. In 'Kyoho' and 'Pione' cultivars, streptomycin successfully induced parthenocarpy. Berry setting by streptomycin treatment was variable according to environmental conditions. 5. In 'Campbell Early' and 'Tanored' cultivars, streptomycin severely reduced viability of pollen.

  • PDF

Effect of Meteorological Condition during Ripening on the Grain Shattering of Rice Plant (등숙기 기상조건이 벼알의 탈립성에 미치는 영향)

  • J. C. Shin;Y. W. Kwon;C. J. Chung
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.27 no.3
    • /
    • pp.229-234
    • /
    • 1982
  • Environmental factors are known in general to influence much on the development of abscission layer and thereby on shedding of plant parts. The present study was carried out to determine the effect of meterological condition during ripening on the grain shatterability of rice plants at harvest. Different meteorological conditions were obtained by shifting transplanting timing of 40 days old rice seedlings 4 times with a 15 days-interval. Grain shatterability was measured as tensile strength of rice grains: it varied within a range of 214g. to 251g. in a practically non-shattering Japonica variety'Jinheung' and l27.5g. to 204g. in an easy shattering Indica \times Japonica progeny variety'Taeback'. In view of field loss of rice, the variation in tensile strength with time of transplanting and harvest did not matter in Jinheung, but was an important factor in Taeback. In Taeback the tensile strength was significantly correlated positively with mean, maximum and minimum air temperature and relative humidity during a certain period of grain ripening, especially during 30 days period before harvest, but diurnal range of air temperature showed a significant, negative correlation with it. The tensile strength seemed to be more closely related with min. air temperature than max. air temperature, and it was not significantly correlated with radiation amount during any period of pre-harvest. Meteorological effect on grain shatterability may vary with variety, but temperature regime during ripening appears to play major role among the meteorological factors in easy shattering and more thermophilic Indica \times Japonica varieties: lower the temperature, greater the shatterability.

  • PDF

Effects of Packaging and Storage Temperature on Quality during Storage of Mungbean Sprouts (숙주나물의 저장 중 품질에 미치는 포장 및 저장온도의 영향)

  • Cho Sook-Hyun;Lee Sang-Dae;Choi Yong-Jo;Kim Nak-Goo;Kang Jin-Ho;Cho Sung-Hwan
    • Food Science and Preservation
    • /
    • v.12 no.6
    • /
    • pp.522-528
    • /
    • 2005
  • Effects of packaging and storage temperature on the quality and shelf life of mungbean sprouts(vigna radiata (L.) Wilczek) were studied Mungbean sprouts were packaged in polypropylene films(PP) and oriented polypropylene films(OPP) with 200 g, 250 g, and 300 g and stored at $4^{\circ}C,\;8^{\circ}C$ and $12^{\circ}C$, respectively. The deterioration of quality of mungbean sprouts during storage was caused by wilting of hypocotyl, abscission of cotyledon and softening of tissue. Total weight loss never exceeded $1\%$ and no visible signs of shrivelling of mungbean sprouts were observed. At $4^{\circ}C,\;30{\mu}m$ of OPP film per 250 g mungbean sprouts provided the optimal atmosphere composition(i.e. $3\%\;\O_2\;and\;5\%\;CO_2$). A shelf life of 6 days was achieved with these conditions. Hardness of hypocotyl, when deterioration in freshness began, was about 1,027.2 g when considerably deteriorated Hunter b value was 13 in deteriorated hypocotyl, vs. 11 for hypocotyl of fresh mungbean sprouts was accelerated by fluctuating storage temperature by the increment of storage time. It also was found that the optimum shelf life period was estimated to be 6, 2 and 2 days for 4, 8 and $12^{\circ}C$, respectively.

Bud Development and Bud Break Characteristics in Water Cuttings of 'Campbell Early' Grapevine during Dormancy ('캠벨얼리' 포도의 휴면기 눈 발달 및 수삽을 통한 발아 특성 조사)

  • Lee, ByulHaNa;Park, YoSup;Kwon, YongHee;Han, Jeom-Hwa;Park, Hee-Seung
    • Horticultural Science & Technology
    • /
    • v.33 no.2
    • /
    • pp.202-209
    • /
    • 2015
  • In this study, we investigated the cumulative effect of low temperature on bud dormancy release and bud break characteristics in 'Campbell Early' grapevine (Vitis labruscana B.) cuttings grown in water culture. Additionally, we observed the development of buds while exposed to low temperatures in an attempt to improve our understanding of dormancy and bud break. The shoots were collected 120 days after full bloom (DAFB; leaf abscission period), and the accumulated chill unit (CU) value was calculated by reducing the temperature to $7.2^{\circ}C$ at 125 DAFB. The rate of bud break was 100% in shoots collected at 150 DAFB, The period until the first bud break was two times longer than in the shoots collected 165 DAFB, and bud break speed was significantly reduced. These results indicate that buds are released from endodormancy after 165 DAFB, because at this point the bud break was complete (bud break rate 100%) and it occurred in a very short time period. During this period, when the low-temperature accumulated value was 321h and 442CU according to the CH and Utah models, respectively. Furthermore, the survival rate of main buds decreased rapidly after 165 DAFB, and survival rate of accessory buds was maintained at more than 90% without seasonal differences. The rate of flower bud formation of main buds was much higher than in accessory buds (1:0.23) before the release from endodormancy at 150 DAFB. The final ratio of accessory buds to main buds was high, 1:1.54, at 255 DAFB. Correlation analysis of each investigated factor revealed that bud survival rate and bud formation rate were related only for the main buds, and there was a close relationship between the survival rate of main bud and time. In addition, the survival rate of main buds was positively correlated to the rate of flower bud formation.

Effect of GA3 Treatment on Bud Formation, Fruit Set, and Enlargement in Ardisia pusilla (GA3에 의한 산호수의 화아형성과 착과 및 비대 증진효과)

  • Kil, Mi-Jung;Huh, Yeun-Joo;Kwon, Young-Soon
    • Horticultural Science & Technology
    • /
    • v.29 no.6
    • /
    • pp.555-560
    • /
    • 2011
  • The objective of this study was carried out to investigate the proper plant growth regulator for increasing the number of flower, fruit set, and to enlarge the size of the berries in Ardisia pusilla. Flower bud formation was used rooted cutting, and fruit set, enlargement, and coloration of fruit were used with two years-old. $GA_3$ concentrations were treated with 0, 100, 200, or $400mg{\cdot}L^{-1}$. Flower bud formation was effective in $400mg{\cdot}L^{-1}$ $GA_3$ and it was 1.8 times greater than control. Plant growth regulators were applied by foliar spray at full bloom stage to increase the fruit set. As a result, $GA_3$ was the most effective for increasing fruit set. Also, auxins of 4-CPA (Tomatotone, Donbu hitech Co., Korea) and dichloprop triethanol amine (Antifall, Bayer Crop Science Co., Ltd., Korea) were effective. When $GA_3$ concentrations of 0.5 and $1.0mg{\cdot}L^{-1}$ were used, fruit set (%) reached to 70% and 77%, respectively. Effectiveness of $GA_3$ was 1.8 times greater than control. Also, auxins, dichloprop triethanol amine increased to about 7-12% during fruit setting, but cytokinin and anti-gibberellin were ineffective. To investigate the fruit enlargement and coloration, $GA_3$ was treated with 0.3, 0.6, and $1.2mg{\cdot}L^{-1}$. Fruit enlargement was achieved to about 15% by $GA_3$ $0.6mg{\cdot}L^{-1}$ when $GA_3$ was treated 3 times at the interval of 1 month per treatment when fruit size was about 2-3mm (after full-blooming two months). But anthocyanin contents for coloration of fruit skin were not significant according to $GA_3$ concentration. The results showed that $GA_3$ enhanced bud formation, fruit set and enlargement of fruit size in Ardisia pusilla.

Influence of Shading and Irrigation on the Growth and Development of Leaves Tissue in Hot Pepper (고추 고온기 재배 시 차광과 관수가 생육 및 엽육조직 발달에 미치는 영향)

  • Lee, Sang Gyu;Choi, Chang Sun;Lee, Jun Gu;Jang, Yoon Ah;Lee, Hee Ju;Chae, Won Byoung;Do, Kyung Ran
    • Horticultural Science & Technology
    • /
    • v.32 no.4
    • /
    • pp.448-453
    • /
    • 2014
  • Influences of shading and irrigation in summer hot pepper cultivation on the plant growth and mesophyll tissue were investigated. Hot pepper plants were exposed to three shade levels (0, $30{\pm}5$ and $80{\pm}5%$) and irrigated or non-irrigated in greenhouse condition. Plant height and leaf area were highest in 30% shading and stem diameter and fresh and dry weights were highest in no shading. Plant growth was better in rain shelters with irrigation than in those without irrigation. The numbers of hot pepper fruits in the beginning of harvest were 49 in rain shelters without irrigation and shading, 22 in those with irrigation and without shading, 5 in those without irrigation with 30% shading, and 1 in those with irrigation and 30% shading. However, 80% shading showed lowest flower number and flower abscission, resulting in no fruit set, regardless of irritation. This is because carbohydrate translocation from leaves to reproductive organs may be not enough for developing fruits due to the lack of sunlight. The yield of hot pepper tended to be higher in rain shelter with irrigation than in those without irrigation. In optical microscopy observation, the thickness and development of mesophyll tissues decreased as increasing the degree of shading but no effect of irrigation on mesophyll tissues was observed. When stomata were observed with scanning electron microscope (SEM), the shape of stomata was normal but tissues surrounding stomata were slightly wrinkled in plants grown under 30% shading. The large number of abnormal stomata and wrinkled leaves was observed among plants grown in rain shelters with 80% shading. In plants grown in rain shelters without irrigation, tissues surrounding stomata were wrinkled and 10-20% decrease in the number of stomata was observed. Therefore, in hot pepper cultivation in summer with high temperature, shading was not effective for fruit yield and mesophyll tissue development; if shading is unavoidable, high degree of shading is not advisable. Further studies are needed for appropriate cultivar selection and environment-control techniques in hot pepper cultivation in summer with high temperature.

Overwintering pattern of larvae of Chilo suppressalis Walker in the bioenergy crop Miscanthus sacchariflorus cv. Geodae 1 (바이오에너지작물 거대억새 가해 해충 이화명나방 유충 월동양상)

  • An, Gi Hong;Yang, Jungwoo;Jang, Yun-Hui;Um, Kyoung Ran;Kim, Seok;Cha, Young-Lok;Yoon, Young-Mi;Moon, Youn-Ho;Ahn, Joung Woong;Yu, Gyeong-Dan
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.59 no.3
    • /
    • pp.369-374
    • /
    • 2014
  • The rice stem borer (Chilo suppressalis Walker) was one of the most destructive pest of rice for the 1960s and 1970s in Korea. Recently, it is newly recognized as a potential risk factor to the biomass yield of bioenergy crops. The current research was firstly conducted to investigate overwintering larvae population density and pattern of rice stem borer attacking Miscanthus sacchariflorus cv. Geodae 1 which is referred to as an ideal lignocellulosic bioenergy crop in Korea. Population density of larvae per $1m^2$ in stems and rhizomes at the Miscanthus experimental plots and rates of damage (wormhole, abscission) of M. sacchariflorus cv. Goedae 1 were investigated from October 2012 to March 2013. The population of larvae per $1m^2$ in stems of Miscanthus were 23, 4, 1, and 1 in October, November, December 2012, and January 2013, respectively. Over the same period, the population of larvae in basal stem rots and rhizomes were increased, whereas decreased in stems. Interestingly, the positions of larvae for overwintering in Miscanthus were confirmed to 5~10 cm below the soil surface such as basal stem rot and rhizome, whereas the most common overwintering position known in rice is a part of stem on the ground such as rice straw and rice stubble. It would suggest that the larvae gradually moved to bottom of stems and rhizomes in soil in line with decline in temperature. Moreover, the damage rates of stems per $1m^2$ were up to more than 50% in some places. In conclusion, this might be the first report that rice stem borer could affect the productivity of biomass of Miscanthus in case of mass cultivation. Moreover, it should be necessary to make a decision in insect control management for this bioenergy feedstock and other related crops.

Effect of Root Zone Warming by Hot Water on Rhizosphere Environment and Growth of Greenhouse- grown Oriental Melon (Cucumis melo L.) (온수 지중가온이 참외의 근권환경 및 생육에 미치는 영향)

  • 신용습;이우승;도한우;배수곤;최성국
    • Journal of Bio-Environment Control
    • /
    • v.6 no.2
    • /
    • pp.103-109
    • /
    • 1997
  • This experiment was conducted to investigate the effects of root zone warming on rhizosphere temperature of Oriental melon (Cucumis melo L. var. Makuwa) in winter season. Root zone was warmed by hot water flowing through pipe set at 35cm depth from the ridge. Treatments of minimum soil temperature at 20cm depth were 17, 21, $25^{\circ}C$, and non-warmed from Jan. 18 to Apr. 18. The results are summarized as follows. 1. The cumulative soil temperature for 1 month after planting oriental melon was 441, 558, 648, and 735$^{\circ}C$ at control, 17, 21, and $25^{\circ}C$ plot, respectively. 2. As soil temperature was higher, air temperature in tunnel was higher. The lowest temperature in control plot at night was 9.5$^{\circ}C$, 11.$0^{\circ}C$ in 17$^{\circ}C$ plot, 13.5$^{\circ}C$ in 21$^{\circ}C$ plot, and 16.5$^{\circ}C$ in $25^{\circ}C$ plot, respectively. 3. The xylem exudate amount of control plot for 24 hours just after basal stem abscission was 8.1$m\ell$. It was 1.2 times higher in 17$^{\circ}C$ plot, 1.3 times higher in 21 $^{\circ}C$ plot, and 4.8 times higher in $25^{\circ}C$ plot than in control plot at 30 days after planting. The xylem exudate amount at 67 days after planting of control plot was 10.4$m\ell$, those of 17, 21, $25^{\circ}C$ plots were 1.1, 3.2, and 3.3 times as compared to control plot. 4, Early growth in leaf length, stem diameter, leaf number and leaf area for 30 days after planting were better in higher temperature plots than in control plot. Particularly, the increase of leaf area was striking in higher temperature plots. Leaf area of control plot was 279.5$\textrm{cm}^2$ for 30 days after planting, 153.4% in 17$^{\circ}C$ plot, 745.6% in 21$^{\circ}C$ plot and 879.4% in $25^{\circ}C$ plot were increased as compared to in control plot.

  • PDF