• Title/Summary/Keyword: Abscisic acid

Search Result 209, Processing Time 0.025 seconds

An ARIA-Interacting AP2 Domain Protein Is a Novel Component of ABA Signaling

  • Lee, Sun-ji;Cho, Dong-im;Kang, Jung-youn;Kim, Soo Young
    • Molecules and Cells
    • /
    • v.27 no.4
    • /
    • pp.409-416
    • /
    • 2009
  • ADAP is an AP2-domain protein that interacts with ARIA, which, in turn, interacts with ABF2, a bZIP class transcription factor. ABF2 regulates various aspects of the abscisic acid (ABA) response by controlling the expression of a subset of ABA-responsive genes. Our expression analyses indicate that ADAP is expressed in roots, emerging young leaves, and flowers. We found that adap knockout mutant lines germinate more efficiently than wild-type plants and that the mutant seedlings grow faster. This suggests that ADAP is involved in the regulation of germination and seedling growth. Both germination and post-germination growth of the knockout mutants were partially insensitive to ABA, which indicates that ADAP is required for a full ABA response. The survival rates for mutants from which water was withheld were low compared with those for wild-type plants. The result shows that ADAP is necessary for the response to stress induced by water deprivation. Together, our data indicate that ADAP is a positive regulator of the ABA response and is also involved in regulating seedling growth. The role of ADAP is similar to that of ARIA, which is also a positive regulator of the ABA response. It appears that ADAP acts through the same ABA response pathway as ARIA.

Induced Tolerance to Salinity Stress by Halotolerant Bacteria Bacillus aryabhattai H19-1 and B. mesonae H20-5 in Tomato Plants

  • Yoo, Sung-Je;Weon, Hang-Yeon;Song, Jaekyeong;Sang, Mee Kyung
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.7
    • /
    • pp.1124-1136
    • /
    • 2019
  • Salinity is one of the major abiotic stresses that cause reduction of plant growth and crop productivity. It has been reported that plant growth-promoting bacteria (PGPB) could confer abiotic stress tolerance to plants. In a previous study, we screened bacterial strains capable of enhancing plant health under abiotic stresses and identified these strains based on 16s rRNA sequencing analysis. In this study, we investigated the effects of two selected strains, Bacillus aryabhattai H19-1 and B. mesonae H20-5, on responses of tomato plants against salinity stress. As a result, they alleviated decrease in plant growth and chlorophyll content; only strain H19-1 increased carotenoid content compared to that in untreated plants under salinity stress. Strains H19-1 and H20-5 significantly decreased electrolyte leakage, whereas they increased $Ca^{2+}$ content compared to that in the untreated control. Our results also indicated that H20-5-treated plants accumulated significantly higher levels of proline, abscisic acid (ABA), and antioxidant enzyme activities compared to untreated and H19-1-treated plants during salinity stress. Moreover, strain H20-5 upregulated 9-cisepoxycarotenoid dioxygenase 1 (NCED1) and abscisic acid-response element-binding proteins 1 (AREB1) genes, otherwise strain H19-1 downregulated AREB1 in tomato plants after the salinity challenge. These findings demonstrated that strains H19-1 and H20-5 induced ABA-independent and -dependent salinity tolerance, respectively, in tomato plants, therefore these strains can be used as effective bio-fertilizers for sustainable agriculture.

Identification of ABSCISIC ACID (ABA) signaling related genes in Panax ginseng

  • Hong, Jeongeui;Kim, Hogyum;Ryu, Hojin
    • Journal of Plant Biotechnology
    • /
    • v.45 no.4
    • /
    • pp.306-314
    • /
    • 2018
  • Korean ginseng (Panax ginseng) has long been cultivated as an important economic medicinal plant. Owing to the seasonal and long-term agricultural cultivation methods of Korean ginseng, they are always vulnerable to various environmental stress conditions. ABSCISIC ACID (ABA) is an essential plant hormone associated with seed development and diverse abiotic stress responses including drought, cold and salinity stress. By modulating ABA responses, plants can regulate their immune responses and growth patterns to increase their ability to tolerate stress. With recent advances in genome sequencing technology, we first reported the functional features of genes related to canonical ABA signaling pathway in P. ginseng genome. Based on the protein sequences and functional genomic analysis of Arabidopsis thaliana, the ABA related genes were successfully identified. Our functional genomic characterizations clearly showed that the ABA signaling related genes consisting the ABA receptor proteins (PgPYLs), kinase family (PgSnRKs) and transcription factors (PgABFs, PgABI3s and PgABI5s) were evolutionary conserved in the P. ginseng genome. We confirmed that overexpressing ABA related genes of P. ginseng completely restored the ABA responses and stress tolerance in ABA defective Arabidopsis mutants. Finally, tissue and age specific spatio-temporal expression patterns of the identified ABA-related genes in P. ginseng tissues were also classified using various available RNA sequencing data. This study provides ABA signal transduction related genes and their functional genomic information related to the growth and development of Korean ginseng. Additionally, the results of this study could be useful in the breeding or artificial selection of ginseng which is resistant to various stresses.

Arabidopsis Raf-Like Kinase Raf10 Is a Regulatory Component of Core ABA Signaling

  • Nguyen, Quy Thi Cam;Lee, Sun-ji;Choi, Seo-wha;Na, Yeon-ju;Song, Mi-ran;Hoang, Quyen Thi Ngoc;Sim, Seo Young;Kim, Min-Sik;Kim, Jeong-Il;Soh, Moon-Soo;Kim, Soo Young
    • Molecules and Cells
    • /
    • v.42 no.9
    • /
    • pp.646-660
    • /
    • 2019
  • Abscisic acid (ABA) is a phytohormone essential for seed development and seedling growth under unfavorable environmental conditions. The signaling pathway leading to ABA response has been established, but relatively little is known about the functional regulation of the constituent signaling components. Here, we present several lines of evidence that Arabidopsis Raf-like kinase Raf10 modulates the core ABA signaling downstream of signal perception step. In particular, Raf10 phosphorylates subclass III SnRK2s (SnRK2.2, SnRK2.3, and SnRK2.6), which are key positive regulators, and our study focused on SnRK2.3 indicates that Raf10 enhances its kinase activity and may facilitate its release from negative regulators. Raf10 also phosphorylates transcription factors (ABI5, ABF2, and ABI3) critical for ABA-regulted gene expression. Furthermore, Raf10 was found to be essential for the in vivo functions of SnRK2s and ABI5. Collectively, our data demonstrate that Raf10 is a novel regulatory component of core ABA signaling.

Long-term drought modifies carbon allocation and abscisic acid levels in five forest tree species

  • Umashankar Chandrasekaran;Kunhyo Kim;Siyeon Byeon;Woojin Huh;Ah Reum Han;Young-Sang Lee;Hyun Seok Kim
    • Journal of Ecology and Environment
    • /
    • v.47 no.4
    • /
    • pp.241-249
    • /
    • 2023
  • Background: This study analyzed the drought responses of five forest tree species grown in Korean peninsula, Korean fir Abies koreana (Ak), eastern white pine Pinus strobus (Ps), keyaki Zelkova serrata (Zs), tulip tree Liriodendron tulipifera (Lt), and Japanese elm Ulmus japonica (Uj). Physiological (chlorophyll, root collar diameter [RCD]) and biochemical responses (non-structural carbohydrates, proline, lipid peroxidase and abscisic acid [ABA]) of the plants grown under mild (MD) and severe drought (SD) were compared. Results: In this study, three soil moisture regimes: control (100% precipitation), MD (60% reduction in precipitation) and SD (20% reduction in precipitation) were applied. Soil moisture content showed high water content in control site compared to MD and SD. A decline in RCD was found for Korean fir, keyaki, and tulip plants, with eastern white pine and Japanese elm showing no significant decline to the prolonged drought exposure (both MD and SD). Total chlorophyll showed a significant decline in Korean fir and tulip, with the sugar levels indicating a significant increase in Korean fir and keyaki species under SD compared to control plants. Non-significant decline in sugar level was noted for eastern white pine and Japanese elm. High accumulation of ABA, malondealdehyde and proline was noted in Korean fir, tulip, and keyaki under SD compared to control. Signs of tree mortality was only observed in Korean fir under MD (38%) and SD (43%). Conclusions: The observed findings indicate the drought responses of five tree species. The majority of the morpho-physiological (especially mortality) and biochemical variables assessed in our study indicate superior long-term drought resistance of Ps and Uj compared to the highly sensitive Ak, and moderately sensitive Lt and Zs. The results provided will help species selection for afforestation programs and establishment of sustainable forests, especially of drought-tolerant species, under increased frequency and intensity of spring and summer droughts.

Influence of Thermal Treatments on Germination and Internal Compositions of 'Hongro' and 'Fuji' Apple Trees during Endodormancy (내재휴면기 온도처리가 사과 '홍로' 와 '후지'의 발아와 내부물질 변화에 미치는 영향)

  • Cho, Jung Gun;Ryu, Suhyun;Lee, Seul-Ki;Han, Jeom Hwa;Jeong, Jae Hoon
    • Journal of Bio-Environment Control
    • /
    • v.28 no.4
    • /
    • pp.352-357
    • /
    • 2019
  • In this study, we investigated the limit temperature range which is effective for dormancy release of 'Hongro' and 'Fuji' apples during the endodormancy period. The germination rate was 50% or more in all treatments except of 'Hongro' $-5^{\circ}C$ treatment. The germination rate of 'Fuji' was 86.3% at the temperature of $-5^{\circ}C$. The concentrations of carbohydrate and mineral components were significantly different between treatments but did not show any tendency or specific change. However, the sorbitol contents of 'Hongro' $-5^{\circ}C$ treatment were higher at 29.62 mg/g than those of 'Fuji', which was not affected for dormancy release. The results of hormone analysis showed that ABA(abscisic acid) and JA(jasmonic acid) in 'Hongro' $-5^{\circ}C$ treatment were respectively 176.48 and 15.72 ng/g. ABA, JA and SA(salicylic acid) contents in 'Fuji' apple tree were significantly lower than those of 'Hongro'. As a result of this study, the limit temperature range effective for dormancy release was different according to the varieties, and 'Hongro' did not affect with 30.3% of germination rate at $-5^{\circ}C$. However, 'Fuji' is 86.3% even at $-5^{\circ}C$ it was suggested that 'Fuji' had a chilling accumulation for dormancy release.

Molecular Characterization of a Chinese cabbage cDNA, C-DH, Predominantly Induced by Water-Deficit Stress and Plant Hormone, ABA (수분부족 및 식물호르몬, ABA에 의하여 발현이 유도되는 배추의 C-DH cDNA에 대한 분자적 특성)

  • 정나은;이균오;홍창휘;정배교;박정동;이상열
    • Korean Journal Plant Pathology
    • /
    • v.14 no.3
    • /
    • pp.240-246
    • /
    • 1998
  • A cDNA encoding desiccation-related protein was isolated from a flower bud cDNA library of Chinese cabbage (C-DH) and its nucleotide sequence was characterized. It contains 679 bp nucleotides with 501 bp open reading frame. The amino acid sequence of the putative protein showed the highest amino acid sequence homology (79 % identity) to dehydrin protein in Gossypium hirsutum. Also, the C-DH shares 48-52% amino acid sequence identity with the other typical dehydrin proteins in plant cells. When the amino acid sequence of their proteins were aligned, several peptide motifs were well conserved, of which function has to be solved. Particularly the C-DH contains 15 additional amino acids at its N-terminus. Genomic Southern blot analysis using the coding region of C-DH showed that the C-DH consists of a single copy gene in Chinese cabbage genome. The C-DH mRNA, whose transcript size is 0.7 kb, was expressed with a tissue-specific manner. It was highly expressed in seed, flower buds and low expression as detected in root, stem or leaf tissues of Chinese cabbage. And the transcript level of C-DH was significantly induced by the treatment of plant hormone, abscisic acid and water-deficit conditions.

  • PDF

Rooting of Needle Fascicles of Pinus radiata in Test Tubes (Pinus radiata 엽속삽목(葉束揷木)의 시험관내(試驗管內) 발근(發根))

  • Hong, Sung Ok;Sweet, Geoffrey B.
    • Journal of Korean Society of Forest Science
    • /
    • v.32 no.1
    • /
    • pp.64-72
    • /
    • 1976
  • A series of rooting experiments of P. radiata needle fascicles were carried out in test tubes using peat-pumice medium to see a possibility of rooting fascicles in test tubes and, if possible, to find out whether that method can improve the rooting. Typical rooting of clones from ortets aged 3, 7, 11. 18, and over 40, respectively, was 57%, 47%, 18%, 4%, and 2%. The effect of ortet ages upon rooting of fascicle cuttings was significantly exerted in these experiments. In the older ortets these results are not as good as those often obtained in a glasshouse. Hormones tested (indolebutyric acid and abscisic acid) had no significant effect on rooting and neither did a series of fungicides tested. Needle fascicles placed in an 18 hour day at $20^{\circ}/10^{\circ}C$ (day/night temperature) rooted signficantly better than those in a 10 hour day at the same temperature regime. The latter in turn rooted better than those set under a 10 hour day at $15^{\circ}/5^{\circ}C$. Clonal differences in rooting ability were also distinct in every trial of the present experiments with needle fascicles.

  • PDF

Effects of Plant Growth Regulators Sprayed at Unfolded Leaf Stage on Fruit Quality in 'Campbell Early' Grape (포도 '캠벨얼리' 품종의 전엽기 생장조절제 처리가 품질에 미치는 영향)

  • Chun, Jong-Pil;Kim, Byung-Ki;Bae, Tae-Min;Oh, Kyung-Young;Kim, Jin-Gook
    • Journal of agriculture & life science
    • /
    • v.46 no.6
    • /
    • pp.9-15
    • /
    • 2012
  • This study was conducted to increase grape quality by treating plant growth regulator (PGR) in 'Campbell Early' grape. Foliar application of gibberellic acid ($GA_3$) at $5mg{\cdot}L^{-1}$ on flower cluster of 'Campbell Early' grape at 3-5 unfolded leaf stage effectively increased columella length, berry weight, soluble solid contents and promoted skin color development. Foliar application of $20mg{\cdot}L^{-1}$ abscisic acid (ABA) mixed with $5mg{\cdot}L^{-1}$ of $GA_3$ on flower cluster of 'Campbell Early' grape at 3-4 unfolded leaf stage effectively increased skin anthocyanin contents without any detrimental effects on berry enlargement and columella growth. Foliar application of $2.5mg{\cdot}L^{-1}$ thidiazuron mixed with $5mg{\cdot}L^{-1}$ of $GA_3$ on flower cluster of 'Campbell Early' grape at 3-4 unfolded leaf stage effectively increased fruit quality indices such as higher soluble solid contents and less titratable acidity.

In Vitro Flower Abscission Induction in North American Ginseng

  • Campeau Cindy;Proctor John T. A.
    • Journal of Ginseng Research
    • /
    • v.29 no.2
    • /
    • pp.71-79
    • /
    • 2005
  • In vitro studies using detached inflorescences with peduncles were conducted to investigate flower abscission agents in North American ginseng (Panax quinquefolius L.). Of the nine compounds studied only three, ammonium thiosulphate (ATS), abscisic acid (ABA) and ethephon induced abscission. Anilazine, benzyladenine, carbaryl, gibberellic acid, napthaleneacetic acid and thidiazuron did not induce abscission. ATS dip treatments did not induce abscission but the spray treatments induced $60.5\%$ abscission at $1500\;mg{\cdot}L^{-1}$ and $33.1\%$ at $3000\;mg{\cdot}L^{-1}$. Severe chlorophyll loss occurred on all inflorescences treated with ATS. Both ABA dip treatments and a $250\;{\mu}mol{\cdot}L^{-1}$ spray treatment caused abscission $(40\%)$ without adverse effects, and timing of ABA application was important. Because ABA was only significant in the dip treatments, ABA may not be a practical option for field use on ginseng. Ethephon sprays induced more abscission as the season progressed and as the concentration increased. As the dip concentrations of ethephon increased, the abscission rate decreased and the health of the inflorescences declined. The $1500\;mg{\cdot}L^{-1}$ spray of ethephon gave consistent abscission results over the glowing season with little phytotoxicity. Treatment with the competitive ethylene inhibitor 1-methylcy-clopropene (1-MCP) suggested that flower abscission was due to the liberation of ethylene from the breakdown of ethephon.