DOI QR코드

DOI QR Code

Influence of Thermal Treatments on Germination and Internal Compositions of 'Hongro' and 'Fuji' Apple Trees during Endodormancy

내재휴면기 온도처리가 사과 '홍로' 와 '후지'의 발아와 내부물질 변화에 미치는 영향

  • Cho, Jung Gun (Fruit Research Division, National Institute of Horticultural & Herbal Science, RDA) ;
  • Ryu, Suhyun (Fruit Research Division, National Institute of Horticultural & Herbal Science, RDA) ;
  • Lee, Seul-Ki (Fruit Research Division, National Institute of Horticultural & Herbal Science, RDA) ;
  • Han, Jeom Hwa (Fruit Research Division, National Institute of Horticultural & Herbal Science, RDA) ;
  • Jeong, Jae Hoon (Fruit Research Division, National Institute of Horticultural & Herbal Science, RDA)
  • 조정건 (국립원예특작과학원 과수과) ;
  • 류수현 (국립원예특작과학원 과수과) ;
  • 이슬기 (국립원예특작과학원 과수과) ;
  • 한점화 (국립원예특작과학원 과수과) ;
  • 정재훈 (국립원예특작과학원 과수과)
  • Received : 2019.07.22
  • Accepted : 2019.09.19
  • Published : 2019.10.30

Abstract

In this study, we investigated the limit temperature range which is effective for dormancy release of 'Hongro' and 'Fuji' apples during the endodormancy period. The germination rate was 50% or more in all treatments except of 'Hongro' $-5^{\circ}C$ treatment. The germination rate of 'Fuji' was 86.3% at the temperature of $-5^{\circ}C$. The concentrations of carbohydrate and mineral components were significantly different between treatments but did not show any tendency or specific change. However, the sorbitol contents of 'Hongro' $-5^{\circ}C$ treatment were higher at 29.62 mg/g than those of 'Fuji', which was not affected for dormancy release. The results of hormone analysis showed that ABA(abscisic acid) and JA(jasmonic acid) in 'Hongro' $-5^{\circ}C$ treatment were respectively 176.48 and 15.72 ng/g. ABA, JA and SA(salicylic acid) contents in 'Fuji' apple tree were significantly lower than those of 'Hongro'. As a result of this study, the limit temperature range effective for dormancy release was different according to the varieties, and 'Hongro' did not affect with 30.3% of germination rate at $-5^{\circ}C$. However, 'Fuji' is 86.3% even at $-5^{\circ}C$ it was suggested that 'Fuji' had a chilling accumulation for dormancy release.

본 연구는 사과나무 '홍로'와 '후지'의 내재휴면 기간 중 휴면타파에 유효한 한계온도 범위를 알아보고자 수행하였다. 저온 축적에 의한 내재휴면 타파 여부를 확인하기 위하여 온도 처리구별로 발아율을 조사한 결과 '홍로' $-5^{\circ}C$ 처리구를 제외한 모든 처리구에서 발아율이 50% 이상으로 나타났다. 또한 '후지'의 온도 처리구별 발아율은 $-5^{\circ}C$ 처리구에서도 86.3%로 휴면이 타파되었다. 탄수화물과 무기성분의 변화는 처리간 유의한 차이는 있었으나 일정한 경향이나 특이한 변화를 나타내지 않았다. 그러나 유리당 분석 결과 sorbitol 함량은 휴면 타파 여부에 따라 휴면이 타파되지 않은 '홍로' $-5^{\circ}C$ 처리구의 경우 29.62mg/g으로 높게 나타났으며, 휴면이 타파된 것으로 판단되는 처리구는 낮은 수준이였다. 호르몬 분석결과 휴면이 타파되지 않은 '홍로' $-5^{\circ}C$ 처리구의 경우 ABA (abscisic acid)와 JA (jasmonic acid)는 각각 176.48, 15.72ng/g으로 높게 나타났으며, 모든 처리구에서 휴면이 타파된 것으로 나타난'후지'의 경우 ABA, JA, SA(salicylic acid) 함량이 '홍로' 품종보다 유의하게 낮게 나타났다. 본 연구 결과 휴면 타파에 유효한 한계온도 범위는 품종에 따라 다르며 '홍로'는 $-5^{\circ}C$에서 발아율이 30.3%로 휴면이 타파되지 않은 것으로 나타났으며, '후지'는 $0^{\circ}C$ 이하인 $-5^{\circ}C$에서도 86.3%로 높게 나타나 저온 축적의 효과가 있는 것으로 판단된다.

Keywords

References

  1. Anderson, J.L. and S. D. Seeley. 1992. Modeling strategy in pomology: Development of the Utah models. Acta. Hort. 313:297-306. https://doi.org/10.17660/actahortic.1992.313.36
  2. Boneh, U., I. Biton, A. Schwartz, and G. Ben-Ari. 2012. Characterization of the ABA signal transduction pathway in Vitis vinifera. Plant Sci. 187: 89-96. https://doi.org/10.1016/j.plantsci.2012.01.015
  3. Davies, P.J. 2012. Plant hormones and their role in plant growth and development. Springer.
  4. Faust, M., Shear, C.B. and Simth, C.B. 1968. Investigation of corking disorders of apples. II Chemical composition of affected tissues. Pro. Amer. Soc. Hort. Sci. 92:82-88.
  5. Hauagge, R. and J.N. Cummins. 1991. Phenotypic variation of length of bud dormancy in apple cultivars and related Malus species. J. Amer. Soc. Hort. Sci. 116:100-106. https://doi.org/10.21273/JASHS.116.1.100
  6. Heide, O.M. 2008. Interaction of photoperiod and temperature in the control of growth and dormancy of Prunus species. Sci. Hort. 115:209-314. https://doi.org/10.1016/j.scienta.2007.08.013
  7. Heide, O.M. and A. K. Prestrud. 2005. Low temperature, but not photoperiod, controls growth cessation and dormancy induction and release in apple and pear. Tree physiology. 25:109-114. https://doi.org/10.1093/treephys/25.1.109
  8. Horvath, D. 2009. Common mechanisms regulate flowering and dormancy. Plant Sci. 177: 523-531. https://doi.org/10.1016/j.plantsci.2009.09.002
  9. Ito, A., T. Sugiura, D. Sakamoto, and T. Moriguchi. 2013. Effects of dormancy progression and low temperature response on changes in the sorbitol concentration in xylem sap of Japanese pear during winter season. Tree Physiol. 33:398-408. https://doi.org/10.1093/treephys/tpt021
  10. Kerepesi, I., M. Toth, and L. Boross. 1996. Water-soluble carbohydrates in dried plant. J. Agric. Food Chem. 44:3235-3239. https://doi.org/10.1021/jf960242b
  11. Kim, J.H., J.C. Kim, K.C. Ko, K.R, Kim, and J.C. Lee. 2006. General pomology. Hyangmoonsha Press, Seoul. P. 38-39, 175-180. (in Korean).
  12. Kweon, H.J., D.H. Sagong, Y.Y. Song, M.Y. Park, S.I. Kwon, and M.J. Kim. 2013. Chilling requirement for breaking of internal dormancy of main apple cultivars in Korea. Kor. J. Hort. Sci. Technol. 31:666-676. (in Korean).
  13. Lang, G.A., J.D. Early, G.C. Martin, and R. L. Darnell. 1987. Endo-, para-, and eco-dormancy: Physiological terminology and classification for dormancy research. HortScience 22:371-377.
  14. Lavee, S. 1973. Dormancy and bud break in warm climates; considerations of growth regulator involvement. Acta Horticulturae. 34: 225-232. https://doi.org/10.17660/actahortic.1973.34.31
  15. Loescher, W.H., T. McCamant and J.D. Keller. 1990. Carbohydrate reserves, translocation, and storage in woody plant roots. HortScience. 25:274-281. https://doi.org/10.21273/HORTSCI.25.3.274
  16. Naor, A., M. Fhaishman, R. Stern, A. Moshe, and A. Erez. 2003. Temperature effects on dormancy completion of vegetative buds in apple. J. Amer. Soc. Hort. Sci. 128:636-641. https://doi.org/10.21273/JASHS.128.5.0636
  17. Pan, X. Q., R. Welti, and X.M. Wang. 2010. Quantitative analysis of major plant hormones in crude plant extracts by high-performance liquid chromatography-mass spectrometry. Nature Protocols. 5: 986-992. https://doi.org/10.1038/nprot.2010.37
  18. Powell, L.E. 1986. The chilling requirement of apple and its role in regulating time of flowering in cold-winter climeates. Acta Hort. 179:129-139. https://doi.org/10.17660/actahortic.1986.179.10
  19. Richardson, E.A., S.D. Seeley, and D.R. Walkre. 1974. A model estimating the completion of the rest for ‘Redhaven’ and ‘Elberta’ peach trees. Hortscience 9:331-332.
  20. Saure, M.C. 1985. Dormancy release in deciduous fruit trees. Hort. Rev. 7:239-300.
  21. Seo, H.H. 2007. Changes of full bloom date of apple 'Fuji' and pear 'Niitake' recently from 30 years. Kor. J. Hort. Sci. Technol. 22. (in Korean).
  22. Shaltout, A.D. and C.R. Unrath. 1983. Rest completion prediction model for 'Starkrimson Delicious' apples. J. Amer. Soc. Hort. Sci. 108:957-961.
  23. Sivaci, A. 2006. Seasonal changes of total carbohydrate contents in three varieties of apple(Malus sylvestris Miller) stem cuttings. Sci. Hort. 109:234-237. https://doi.org/10.1016/j.scienta.2006.04.012
  24. Tomson, W.K., D.L. Jones, and D.G. Nicholes. 1975. Effects of dormancy factors on the growth of vegetative buds of young apple trees. Austral. J. Agr. Res. 26:989-996. https://doi.org/10.1071/AR9750989
  25. Zhang, J.H., W. S. Jia, J.C. Yang, and A.M. Ismail. 2006. Role of ABA in integrating plant responses to drought and salt stresses. Field Crops Research. 97: 111-119. https://doi.org/10.1016/j.fcr.2005.08.018
  26. Zhu, J.K. 2002. Salt and drought stress signal transduction in plants. Annu. Rev. Plant Biol. 53: 247-273. https://doi.org/10.1146/annurev.arplant.53.091401.143329