Browse > Article
http://dx.doi.org/10.1007/s10059-009-0058-3

An ARIA-Interacting AP2 Domain Protein Is a Novel Component of ABA Signaling  

Lee, Sun-ji (Department of Molecular Biotechnology and Kumho Life Science Laboratory, College of Agriculture and Life Sciences, Chonnam National University)
Cho, Dong-im (Department of Molecular Biotechnology and Kumho Life Science Laboratory, College of Agriculture and Life Sciences, Chonnam National University)
Kang, Jung-youn (Department of Molecular Biotechnology and Kumho Life Science Laboratory, College of Agriculture and Life Sciences, Chonnam National University)
Kim, Soo Young (Department of Molecular Biotechnology and Kumho Life Science Laboratory, College of Agriculture and Life Sciences, Chonnam National University)
Abstract
ADAP is an AP2-domain protein that interacts with ARIA, which, in turn, interacts with ABF2, a bZIP class transcription factor. ABF2 regulates various aspects of the abscisic acid (ABA) response by controlling the expression of a subset of ABA-responsive genes. Our expression analyses indicate that ADAP is expressed in roots, emerging young leaves, and flowers. We found that adap knockout mutant lines germinate more efficiently than wild-type plants and that the mutant seedlings grow faster. This suggests that ADAP is involved in the regulation of germination and seedling growth. Both germination and post-germination growth of the knockout mutants were partially insensitive to ABA, which indicates that ADAP is required for a full ABA response. The survival rates for mutants from which water was withheld were low compared with those for wild-type plants. The result shows that ADAP is necessary for the response to stress induced by water deprivation. Together, our data indicate that ADAP is a positive regulator of the ABA response and is also involved in regulating seedling growth. The role of ADAP is similar to that of ARIA, which is also a positive regulator of the ABA response. It appears that ADAP acts through the same ABA response pathway as ARIA.
Keywords
Abscisic acid (ABA); ABF; abiotic stress; Arm protein;
Citations & Related Records

Times Cited By Web Of Science : 7  (Related Records In Web of Science)
연도 인용수 순위
  • Reference
1 Bardwell, V.J., and Treisman, R. (1994). The POZ domain: a conserved protein interaction motif. Genes Dev. 8, 1664-1677   DOI   ScienceOn
2 Bechtold, N., and Pelletier, G. (1998). In planta Agrobacteriummediated transformation of adult Arabidopsis thaliana plants by vacuum infiltration. Methods Mol. Biol. 82, 259-266   PUBMED
3 Boutilier, K., Offringa, R., Sharma, V.K., Kieft, H., Ouellet, T., Zhang, L., Hattori, J., Liu, C.M., van Lammeren, A.A., Miki, B.L., et al. (2002). Ectopic expression of BABY BOOM triggers a conversion from vegetative to embryonic growth. Plant Cell 14, 1737-1749   DOI   PUBMED
4 Chien, C.T., Bartel, P.L., Sternglanz, R., and Fields, S. (1991). The two-hybrid system: a method to identify and clone genes for proteins that interact with a protein of interest. Proc. Natl. Acad. Sci. USA 88, 9578-9582   DOI
5 Choi, H., Hong, J., Kang, J., and Kim, S.Y. (2000). ABFs, a family of ABA-responsive element binding factors. J. Biol. Chem. 21, 1723-1730   DOI   PUBMED   ScienceOn
6 Kim, S., Kang, J., Cho, D.-I., Park, J.H., and Kim, S.Y. (2004b). ABF2, an ABRE-Binding bZIP factor, is an essential component of glucose signaling and its overexpression affects multiple stress tolerance. Plant J. 40, 75-87   DOI   ScienceOn
7 Landschulz, W.H., Johnson, P.F., and McKnight, S.L. (1988). The leucine zipper: a hypothetical structure common to a new class of DNA binding proteins. Science 240, 1759-1764   DOI
8 Moose, S.P., and Sisco, P.H. (1996). Glossy15, an APETALA2-like gene from maize that regulates leaf epidermal cell identity. Genes Dev. 10, 3018-3027   DOI   ScienceOn
9 Murashige, T., and Skoog, F. (1962). A revised medium for rapid growth and bioassay with tobacco tissue culture. Physiol. Plant. 15, 473-497   DOI
10 Sakuma, Y., Maruyama, K., Osakabe, Y., Qin, F., Seki, M., Shinozaki, K., and Yamaguchi-Shinozaki, K. (2006a). Functional analysis of an Arabidopsis transcription factor, DREB2A, involved in drought-responsive gene expression. Plant Cell 18, 1292-1309   DOI   PUBMED   ScienceOn
11 Xiong, L., Schumaker, K.S., and Zhu, J.-K. (2002). Cell signaling during cold, drought, and salt stress. Plant Cell 14, S165-S183   DOI   ScienceOn
12 Foster, R., Izawa, T., and Chua, N.H. (1994). Plant bZIP proteins gather at ACGT elements. FASEB J. 8, 192-200   DOI   PUBMED
13 Nakano, T., Suzuki, K., Fujimura, T., and Shinshi, H. (2006). Genome-wide analysis of the ERF gene family in Arabidopsis and rice. Plant Physiol. 140, 411-432   DOI   ScienceOn
14 Kang, J., Choi, H., Im, M., and Kim, S.Y. (2002). Arabidopsis basic leucine zipper proteins that mediate stress-responsive abscisic acid signaling. Plant Cell 14, 343-357   DOI   PUBMED
15 Chuck, G., Meeley, R.B., and Hake, S. (1998). The control of maize spikelet meristem fate by the APETALA2-like gene indeterminate spikelet1. Genes Dev. 12, 1145-1154   DOI
16 Aida, M., Beis, D., Heidstra, R., Willemsen, V., Blilou, I., Galinha, C., Nussaume, L., Noh, Y.S., Amasino, R., and Scheres, B. (2004). The PLETHORA genes mediate patterning of the Arabidopsis root stem cell niche. Cell 119, 109-120   DOI   PUBMED   ScienceOn
17 Klucher, K.M., Chow, H., Reiser, L., and Fischer, R.L. (1996). The AINTEGUMENTA gene of Arabidopsis required for ovule and female gametophyte development is related to the floral homeotic gene APETALA2. Plant Cell 8, 137-153   DOI   PUBMED
18 Yamaguchi-Shinozaki, K., and Shinozaki, K. (2005). Organization of cis-acting regulatory elements in osmotic- and cold-stressresponsive promoters. Trends Plant Sci. 10, 88-94   DOI   PUBMED   ScienceOn
19 Sambrook, J., and Russell, D.W. (2001). Molecular Cloning: A Laboratory Manual, 3rd eds., (New York, USA: Cold Spring Harbor Laboratory, Cold Spring Harbor)
20 Jofuku, K.D., den Boer, B.G., Van Montagu, M., and Okamuro, J.K. (1994). Control of Arabidopsis flower and seed development by the homeotic gene APETALA2. Plant Cell 6, 1211-1225   DOI
21 Kim, J.-B., Kang, J.-Y., and Kim, S.Y. (2004a). Over-expression of a transcription factor regulating ABA-responsive gene expression confers multiple stress tolerance. Plant Biotechnol. J. 2, 459-466   DOI   ScienceOn
22 Sakuma, Y., Maruyama, K., Qin, F., Osakabe, Y., Shinozaki, K., and Yamaguchi-Shinozaki, K. (2006b). Dual function of an Arabidopsis transcription factor DREB2A in water-stress-responsive and heat-stress-responsive gene expression. Proc. Natl. Acad. Sci. USA 103, 18822-18827   DOI   PUBMED   ScienceOn
23 Elliott, R.C., Betzner, A.S., Huttner, E., Oakes, M.P., Tucker, W.Q., Gerentes, D., Perez, P., and Smyth, D.R. (1996). AINTEGUMENTA, an APETALA2-like gene of Arabidopsis with pleiotropic roles in ovule development and floral organ growth. Plant Cell 8, 155-168   DOI   PUBMED
24 Finkelstein, R.R., Gampala, S.S., and Rock, C.D. (2002). Abscisic acid signaling in seeds and seedlings. Plant Cell 14, S15-S45   DOI
25 Hirayama, T., and Shinozaki, K. (2007). Perception and transduction of abscisic acid signals: keys to the function of the versatile plant hormone ABA. Trends Plant Sci. 14, 343-351   DOI   PUBMED   ScienceOn
26 Uno, Y., Furihata, T., Abe, H., Yoshida, R., Shinozaki, K., and Yamaguchi-Shinozaki, K. (2000). Arabidopsis basic leucine zipper transcription factors involved in an abscisic acid-dependent signal transduction pathway under drought and high-salinity. Proc. Natl. Acad. Sci. USA 97, 11632-11637   DOI   PUBMED   ScienceOn
27 Cernac, A., Andre, C., Hoffmann-Benning, S., and Benning, C. (2006). WRI1 is required for seed germination and seedling establishment. Plant Physiol. 141, 745-757   DOI   PUBMED   ScienceOn
28 Collins, T., Stone, J.R., and Williams, A.J. (2001). All in the family: the BTB/POZ, KRAB, and SCAN domains. Mol. Cell. Biol. 21, 3609-3615   DOI   PUBMED   ScienceOn
29 Kim, S., Choi, H., Ryu, H., Park, J., Kim, M., and Kim, S.Y. (2004c). ARIA, an Arabidopsis arm repeat protein interacting with a transcriptional regulator of abscisic acid-responsive gene expression, is a novel abscisic acid signaling component. Plant Physiol. 136, 3639-3648   DOI   PUBMED   ScienceOn
30 Cernac, A., and Benning, C. (2004). WRINKLED1 encodes an AP2/EREB domain protein involved in the control of storage compound biosynthesis in Arabidopsis. Plant J. 40, 575-585   DOI   PUBMED   ScienceOn
31 Choi, H., Park, H., Park, J., Kim, S., Im, M., Seo, H., Kim, Y., Hwang, I., and Kim, S.Y. (2005). Arabidopsis calcium-dependent protein kinase AtCPK32 interacts with ABF4, a transcriptional regulator of abscisic acid-responsive gene expression, and modulates its activity. Plant Physiol. 139, 1750-61   DOI   PUBMED   ScienceOn
32 Jefferson, R.A., Kavanagh, T.A., and Bevan, M.W. (1987). GUS fusions: b-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J. 20, 3901-3907
33 Song, C.P., Agarwal, M., Ohta, M., Guo, Y., Halfter, U., Wang, P., and Zhu, J.K. (2005). Role of an Arabidopsis AP2/EREBP-type transcriptional repressor in abscisic acid and drought stress responses. Plant Cell 17, 2384-2396   DOI   PUBMED   ScienceOn
34 Busk, P.K., and Pages, M. (1998). Regulation of abscisic acid induced transcription. Plant Mol. Biol. 37, 425-435   DOI   PUBMED   ScienceOn
35 Pandey, G.K., Grant, J.J., Cheong, Y.H., Kim, B.G., Li, L., and Luan, S. (2005). ABR1, an APETALA2-domain transcription factor that functions as a repressor of ABA response in Arabidopsis. Plant Physiol. 139, 1185-1193   DOI   PUBMED   ScienceOn
36 Sakuma, Y., Liu, Q., Dubouzet, J.G., Abe, H., Shinozaki, K., and Yamaguchi-Shinozaki, K. (2002). DNA-binding specificity of the ERF/AP2 domain of Arabidopsis DREBs, transcription factors involved in dehydration- and cold-inducible gene expression. Biochem. Biophys. Res. Commun. 290, 998-1009   DOI   PUBMED   ScienceOn