• Title/Summary/Keyword: Abiotic Stress

Search Result 358, Processing Time 0.336 seconds

Effect of sodium chloride on the growth, amino acid content, and fragrance patterns of Pleurotus ostreatus (염화나트륨 농도가 느타리 자실체의 아미노산과 향기성분에 미치는 영향)

  • Lee, Sang-Chul;Pyeon, Ha-Young;Park, Youn-Jin;Oh, Tae-Seok;Jang, Myoung-Jun
    • Journal of Mushroom
    • /
    • v.19 no.4
    • /
    • pp.310-315
    • /
    • 2021
  • We investigated the effect of sodium chloride-associated abiotic stress on the development of Pleurotus ostreatus. We examined the growth characteristics of fruiting bodies, constituent amino acids, and fragrance pattern to determine the effect of culturing Pleurotus ostreatus on a sawdust substrate supplemented with sodium chloride in a dose-dependent manner. Pleurotus ostreatus fruiting bodies exhibited an increasing tendency towards augmented yields when grown in the presence of 0.5% sodium chloride as compared with that grown in the control group. However, increasing the supplementation of sodium chloride from 1.0 % to 2.0% resulted in significantly decreased yields of Pleurotus ostreatus fruiting bodies in these groups as compared with that in control groups. Further assessment revealed the presence of 14 types of amino acids in the fruiting bodies, including aspartate, threonine, serine, glycine, alanine, methionine, valine, isoleucine, leucine, phenylalanine, tyrosine, lysine, histidine, and arginine, at lower levels in all the sodium chloride-treated groups than in the control group; except for glutamic acid and proline. Similarly, fragrance pattern analysis of the Pleurotus ostreatus fruiting body by chromatography confirmed that the intensity of the substances presumed to be octane compounds, to which the unique flavor of mushrooms is attributed, was lower in all the sodium chloride-treated groups than in the control group.

Growth Characteristics of Lettuce and Korean Mint as Affected by Microbubble in a Closed-type Plant Production System (밀폐형 식물생산시스템에서 마이크로버블 처리에 따른 상추와 배초향의 생장 특성)

  • Eun Won Park;Hee Sung Hwang;Hyeon Woo Jeong;Seung Jae Hwang
    • Journal of Bio-Environment Control
    • /
    • v.32 no.3
    • /
    • pp.234-241
    • /
    • 2023
  • This study was conducted to investigate the growth of lettuce (Lactuca sativa L.) and Korean mint (Agastache rugosa Kuntze) with microbubble in a closed-type plant production system (CPPS) with a deep flow technique (DFT). Lettuce and Korean mint were grown in CPPS for 23 days. Microbubble was treated for 5 minutes daily at 9:00, 13:00, and 17:00 for 16 days. The leaf length, leaf width, leaf area, and fresh and dry weights of lettuce and Korean mint were significantly lower in microbubble than in the control. The total root length, root surface area, and the number of root tips of lettuce and Korean mint were significantly lower in the microbubble than in the control. In the case of average root diameter, there was no difference between the treatments of lettuce. However, Korean mint significantly increased in thickness in the microbubble treatment, indicating variations among the different crops. The results of the research indicated that microbubble treatment in the DFT inhibited plant growth by inducing abiotic stress in lettuce and Korean mint.

Biocontrol Activities of Peribacillus butanolivorans KJ40, Bacillus zanthoxyli HS1, B. siamensis H30-3 and Pseudomonas sp. BC42 on Anthracnose, Bacterial Fruit Blotch and Fusarium Wilt of Cucumber Plants (Peribacillus butanolivorans KJ40, Bacillus zanthoxyli HS1, B. siamensis H30-3와 Pseudomonas sp. BC42에 의한 오이 탄저병, 박과류 과실썩음병과 오이 덩굴쪼김병의 생물방제 효과검정)

  • Jiwon Kim;Mee Kyung Sang
    • Research in Plant Disease
    • /
    • v.29 no.2
    • /
    • pp.188-192
    • /
    • 2023
  • Abiotic and biotic stresses have been a serious threat to crop growth and productivity in the agricultural system. In this study, four strains (HS1, H30-3, KJ40, and BC42), which have biological activities related to disease suppression or alleviation of salinity and drought stresses, were tested for broad-spectrum biocontrol activity against anthracnose caused by Colletotrichum orbiculare, a bacterial fruit blotch caused by Acidovorax citrulli, and Fusarium wilt caused by Fusarium oxysporum in cucumber plants. As a result of test, when the four strains were drenched into the soil, anthracnose in cucumber leaves significantly decrease; strain KJ40 suppressed disease incidence by A. citrulli; strain BC42 significantly reduced bacterial fruit blotch and Fusarium wilt compared to control. Therefore, strain KJ40 could be a biocontrol candidate for controlling anthracnose through induced systemic resistance and the disease caused by A. citrulli as well as alleviating drought stress; strain BC42 has broad-spectrum biocontrol activity against anthracnose, Fusarium wilt, and bacterial fruit blotch.

Analysis of Putative Downstream Genes of Arabidopsis AtERF71/HRE2 Transcription Factor using a Microarray (마이크로어레이를 이용한 애기장대 AtERF71/HRE2 전사인자의 하위 유전자 분석)

  • Seok, Hye-Yeon;Lee, Sun-Young;Woo, Dong-Hyuk;Park, Hee-Yeon;Moon, Yong-Hwan
    • Journal of Life Science
    • /
    • v.22 no.10
    • /
    • pp.1359-1370
    • /
    • 2012
  • Arabidopsis AtERF71/HRE2, a transcription activator, is located in the nucleus and is involved in the signal transduction of low oxygen and osmotic stresses. In this study, microarray analysis using AtERF71/HRE2-overexpressing transgenic plants was performed to identify genes downstream of AtERF71/HRE2. A total of 161 different genes as well as AtERF71/HRE2 showed more than a twofold higher expression in AtERF71/HRE2-overexpressing transgenic plants compared with wild-type plants. Among the 161 genes, 24 genes were transcriptional regulators, such as transcription factors and DNA-binding proteins, based on gene ontology annotations, suggesting that AtERF71/HRE2 is an upstream transcription factor that regulates the activities of various downstream genes via these transcription regulators. RT-PCR analysis of 15 genes selected out of the 161 genes showed higher expression in AtERF71/HRE2-overexpressing transgenic plants, validating the microarray data. On the basis of Genevestigator database analysis, 51 genes among the 161 genes were highly expressed under low oxygen and/or osmotic stresses. RT-PCR analysis showed that the expression levels of three genes among the selected 15 genes increased under low oxygen stress and another three genes increased under high salt stress, suggesting that these genes might be downstream genes of AtERF71/HRE2 in low oxygen or high salt stress signal transduction. Microarray analysis results indicated that AtERF71/HRE2 might also be involved in the responses to other abiotic stresses and also in the regulation of plant developmental processes.

Characterization of SID2 that is required for the production of salicylic acid by using β-GLUCURONIDASE and LUCIFERASE reporter system in Arabidoposis (리포트 시스템을 이용한 살리실산 생합성 유전자 SID2의 발현 해석)

  • Hong, Mi-Ju;Cheong, Mi-Sun;Lee, Ji-Young;Kim, Hun;Jeong, Jae-Cheol;Shen, Mingzhe;Ali, Zahir;Park, Bo-Kyung;Choi, Won-Kyun;Yun, Dae-Jin
    • Journal of Plant Biotechnology
    • /
    • v.35 no.3
    • /
    • pp.169-176
    • /
    • 2008
  • Salicylic acid(SA) is a phytohormone that is related to plant defense mechanism. The SA accumulation is triggered by abiotic and biotic stresses. SA acts as a signal molecular compound mediating systemic acquired resistance and hypersensitive response in plant. Although the role of SA has been studied extensively, an understanding of the SA regulatory mechanism is still lacking in plants. In order to comprehend SA regulatory mechanism, we have been transformed with a SID2 promoter:GUS::LUC fusion construct into siz1-2 mutant and wild plant(Col-0). SIZ1 encodes SUMO E3 ligase and negatively regulates SA accumulation in plants. SID2(SALICYLIC ACID INDUCTION DEFICIENT2) is a crucial enzyme of SA biosynthesis. The Arabidopsis SID2 gene encodes isochorismate synthase(ICS) that controls SA level by conversion of chorismate to isochorismate. We compared the regulation of SID2 in wild-type and siz1-2 transgenic plants that express SID2 promoter:GUS::LUC constructs respectively. The expressions of $\beta$-GLUCURONIDASE and LUCIFERASE were higher in siz 1-2 transgenic plant without any stress treatment. SID2 promoter:GUS::LUC/siz1-2 transgenic plant will be used as a starting material for isolation of siz1-2 suppressor mutants and genes involved in SA-mediated stress signaling pathway.

Selection of Salt-Tolerant Silage Rice Through in vitro Screening and Saltol QTL Analysis (기내 선발과 Saltol QTL 분석을 통한 내염성 증진 사료용 벼 선발)

  • Cho, Chuloh;Kim, Kyung Hwa;Ahn, Eok-Keun;Park, Hyangmi;Choi, Man-Soo;Chun, Jaebuhm;Seo, Mi-Suk;Jin, Mina;Kim, Dool-Yi
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.65 no.3
    • /
    • pp.214-221
    • /
    • 2020
  • Salinity is one of the major abiotic stressors that inhibits the growth, yield, and productivity of crop plants. Therefore, it is necessary to develop crops with increased salt tolerance for cultivation in saline soils such as is found in reclaimed land. The objective of this study was to develop a salt-tolerant silage rice line that grows on reclaimed land. In order to develop this salt-tolerant silage rice, we transferred Saltol, a major QTL associated with salt tolerance, from IR64-Saltol, a salt-tolerant indica variety, into Mogyang, a susceptible elite japonica variety. To determine the effect of salt stress, Mogyang and IR64-Saltol cultivars were grown on a medium containing various concentrations of NaCl in in vitro conditions. Shoot length was found to decrease with increasing salt concentrations, and root growth was almost arrested at NaCl concentrations over 50 mM in the Mogyang cultivar. Based on these preliminary results, we screened five salt-tolerant lines showing superior growth under salt stress conditions. Polymerase chain reaction and sequencing results showed that the introgression types of Saltol QTL were derived from the IR64-Saltol cultivar in almost all selected lines. Based on the observed growth and physiological characteristics, the new Saltol introgression lines showed higher salt tolerance compared to the Mogyang parental cultivar. The salt-tolerant lines identified in this study could be used as a genetic resource to improve rice salt tolerance.

Overexpression of rice NAC transcription factor OsNAC58 on increased resistance to bacterial leaf blight (전사인자 OsNAC58 과발현을 통한 벼 흰잎마름병 저항성 증진 벼)

  • Park, Sang Ryeol;Kim, Hye Seon;Lee, Kyong Sil;Hwang, Duk-Ju;Bae, Shin-Chul;Ahn, Il-Pyung;Lee, Seo Hyun;Kim, Sun Tae
    • Journal of Plant Biotechnology
    • /
    • v.44 no.2
    • /
    • pp.149-155
    • /
    • 2017
  • Bacterial blight in rice caused by Xanthomonas oryzae pv. oryzae (Xoo) greatly reduces the growth and productivity of this important food crop. Therefore, we sought to increase the resistance of rice to bacterial blight by using a NAC (NAM, ATAF, and CUC) transcription factor, one of the plant-specific transcription factors that is known to be involved in biotic/abiotic stress resistance. By isolating the OsNAC58 gene from rice and analyzing its biological functions related to Xoo resistance, phylogenetic analysis showed that OsNAC58 belongs to group III. To investigate the biological relationship between bacterial leaf blight (BLB) and OsNAC58 in rice, we constructed a vector for overexpression in rice and generated transgenic rice. The expression analysis resulting from use of RT-PCR showed that OsNAC58-overexpressed transgenic rice exhibited higher levels of OsNAC58 expression than wild types. Further, subcellular localization analysis using rice protoplasts showed that the 35S/OsNAC58-SmGFP fusion protein was localized in the nuclei. Thirteen OsNAC58-overexpressed transgenic rice lines, with high expression levels of OsNAC58, showed more resistant to Xoo than did the wild types. Together, these results suggest that the OsNAC58 gene of rice regulates the rice disease resistance mechanism in the nucleus upon invasion of the rice bacterial blight pathogen Xoo.

Determination of optimum gamma ray range for radiation mutagenesis and hormesis in quinoa (Chenopodium quinoa Willd.)

  • Park, Chan Young;Song, Seon Hwa;Sin, Jong Mu;Lee, Hyeon Young;Kim, Jin Baek;Shim, Sang In
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.240-240
    • /
    • 2017
  • Quinoa (Chenopodium quinoa Willd.) is one of the ancient crops cultivated in the Andes region at an altitude of 3,500-4000m in Chile and Bolivia from 5000 BC. It contains a large amount of protein, minerals and vitamins in comparison with other crops. The cultivation area has been increasing worldwide because of its excellent resistance to various abiotic stress such as salinity, drought and low temperature. ${\gamma}$-Ray radiation of high dose is often used as a tool to induce mutations in plant breeding, but it has a deleterious effect on organisms. However, the radiation may have a positive stimulatory effect of 'hormesis' in the low dose range. This experiment was carried out to investigate the optimum dose range for creating the quinoa genetic resources and to investigate the hormesis effect at low dose on the quinoa. This experiment was performed for 120 days from November, 2016 to February, 2017 in the greenhouse of Gyeongsang National University. ${\gamma}$-Ray radiation was irradiated to seeds at 0 Gy, 50 Gy, 100 Gy, 200 Gy, 300 Gy, 400 Gy, 600 Gy, 800 Gy and 1000 Gy for 8 hours. (50 Gy) using the low level radiation facility ($Co^{60}$) of Cooperative Research Institute of Radiation Research Institute, KAERI. Fifty seeds were placed on each petri dish lined with wet filter paper and germination rate was measured at a time interval of 2 hours for 40 hrs. The length of the root length was measured one week after germination. Each treatment was carried out in 3 replicates. The growth of seedlings were investigated for 10 days after transplanting of 30 day-old seedlings. The plant height, NDVI, SPAD, Fv/Fm, and panicle weight were measured. The germination rate was highest at 50Gy and 0Gy and the rate of seeds treated with 400Gy or higher rate decreased to 25% of the seeds treated with 50Gy. The emergence rate of seedling in pot experiment was higher at the dose of 200 Gy, 300 Gy and 400 Gy than at 0 and 50Gy. However, the rate was lower at strong radiation higher than 600Gy at which $1^{st}$ leaf was not expanded fully and dead due to extreme overgrowth at 44 days after treatment (DAT). The highest value of panicle weight was observed at 50Gy (6.15g) and 100Gy (5.57g). On the other hand, the weight at high irradiated dose of 300Gy and 400Gy was decreased by about 55% compared to low dose (50 Gy). NDVI measurement also showed the highest value at 50 Gy as the growth progressed. SPAD was the highest at 400 Gy and showed positive correlation with irradiation dose except 0 Gy. Fv/Fm was high at 50 Gy up to 30 DAT and no difference between treatments was observed except for 400 Gy from 44 DAT. The plant height was the highest in 50Gy during the growing period and was higher in the order of 50Dy, 100Gy, 0Gy, 200Gy, 300Gy and 400Gy in 88 DAT. In this experiment, the optimal radiation dose for hormesis was 50Gy and 100Gy, and the optimal radiation dose for mutagenesis seems to be 400 Gy.

  • PDF