Browse > Article
http://dx.doi.org/10.7740/kjcs.2020.65.3.214

Selection of Salt-Tolerant Silage Rice Through in vitro Screening and Saltol QTL Analysis  

Cho, Chuloh (Crop Foundation Research Division, National Institute of Crop Science, RDA)
Kim, Kyung Hwa (Crop Foundation Research Division, National Institute of Crop Science, RDA)
Ahn, Eok-Keun (Department of Central Area Crop Science, National Institute of Crop Science, RDA)
Park, Hyangmi (Department of Central Area Crop Science, National Institute of Crop Science, RDA)
Choi, Man-Soo (Crop Foundation Research Division, National Institute of Crop Science, RDA)
Chun, Jaebuhm (Crop Foundation Research Division, National Institute of Crop Science, RDA)
Seo, Mi-Suk (Crop Foundation Research Division, National Institute of Crop Science, RDA)
Jin, Mina (Crop Foundation Research Division, National Institute of Crop Science, RDA)
Kim, Dool-Yi (Crop Foundation Research Division, National Institute of Crop Science, RDA)
Publication Information
KOREAN JOURNAL OF CROP SCIENCE / v.65, no.3, 2020 , pp. 214-221 More about this Journal
Abstract
Salinity is one of the major abiotic stressors that inhibits the growth, yield, and productivity of crop plants. Therefore, it is necessary to develop crops with increased salt tolerance for cultivation in saline soils such as is found in reclaimed land. The objective of this study was to develop a salt-tolerant silage rice line that grows on reclaimed land. In order to develop this salt-tolerant silage rice, we transferred Saltol, a major QTL associated with salt tolerance, from IR64-Saltol, a salt-tolerant indica variety, into Mogyang, a susceptible elite japonica variety. To determine the effect of salt stress, Mogyang and IR64-Saltol cultivars were grown on a medium containing various concentrations of NaCl in in vitro conditions. Shoot length was found to decrease with increasing salt concentrations, and root growth was almost arrested at NaCl concentrations over 50 mM in the Mogyang cultivar. Based on these preliminary results, we screened five salt-tolerant lines showing superior growth under salt stress conditions. Polymerase chain reaction and sequencing results showed that the introgression types of Saltol QTL were derived from the IR64-Saltol cultivar in almost all selected lines. Based on the observed growth and physiological characteristics, the new Saltol introgression lines showed higher salt tolerance compared to the Mogyang parental cultivar. The salt-tolerant lines identified in this study could be used as a genetic resource to improve rice salt tolerance.
Keywords
mogyang; reclaimed land; Saltol QTL; salt-tolerant; silage rice;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Welch, J. R., J. R. Vincent, M. Auffhammer, P. F. Moya, A. Dobermann, and D. Dawe. 2010. Rice yields in tropical/ subtropical Asia exhibit large but opposing sensitivities to minimum and maximum temperatures. Proc. Natl. Acad. Sci. U. S. A. 107(33) : 14562-14567.   DOI
2 Xie, J. H., F. J. Zapata-Arias, M. Shen, and R. Afza. 2000. Salinity tolerant performance and genetic diversity of four rice varieties. Euphytica. 116 : 105-110. doi:10.1023/A: 1004041900101.   DOI
3 Zhang, G.-Y., Y. Guo, S.-L. Chen, and S.-Y. Chen. 1995. RFLP tagging of a salt tolerance gene in rice. Plant Sci. 110 : 227-234.   DOI
4 Zhang, Y., J. Fang, X. Wu, and L. Dong. 2018. $Na^+/K^+$ balance and transport regulatory mechanisms in weedy and cultivated rice (Oryza sativa L.) under salt stress. BMC Plant Biol. 18 : 375. doi:10.1186/s12870-018-1586-9.   DOI
5 Babu, N. N., S. G. Krishnan, K. K. Vinod, S. L. Krishnamurthy, V. K. Singh, M. P. Singh, R. Singh, R. K. Ellur, V. Rai, H. Bollinedi, P. K. Bhowmick, A. K. Yadav, M. Nagarajan, N. K. Singh, K. V. Prabhu, and A. K. Singh. 2017. Marker aided incorporation of Saltol, a major QTL associated with seedling stage salt tolerance, into Oryza sativa 'Pusa Basmati 1121'. Front. Plant Sci. 8 : 41. doi:10.3389/fpls.2017.00041.
6 Bhowmik, S. K., M. M. Islam, R. M. Emon, S. N. Begum, A. Siddika, and S. Sultana. 2007. Identification of salt tolerant rice cultivars via phenotypic and marker-assisted procedures. Pak. J. Biol. Sci. 10(24) : 4449-4454.   DOI
7 Bizimana, J. B., A. Luzi-Kihupi, W. M. Rosemary, and R. K. Singh. 2017. Identification of quantitative trait loci for salinity tolerance in rice (Oryza sativa L.) using IR29/Hasawi mapping population. Journal of Genetics. 96(40) : 571-582.   DOI
8 Chen, Z. C., N. Yamaji, T. Horie, J. Che, J. Li, G. An, and J. F. Ma. 2017. A magnesium transporter OsMGT1 plays a critical role in salt tolerance in rice. Plant Physiol. 174(3) : 1837-1849.   DOI
9 Bonilla, P., J. Dvorak, D. Mackill, K. Deal, and G. Gregorio. 2002. RFLP and SSLP mapping of salinity tolerance genes in chromosome 1 of rice (Oryza sativa L.) using recombinant inbred lines. Philippine Agricultural Scientist. 85(1) : 68-76.
10 Byrt, C. S., B. Xu, M. Krishnan, D. J. Lightfoot, A. Athman, A. K. Jacobs, N. Watson-Haigh, D. Plett, R. Munns, M. Tester, and M. Gilliham. 2014. The Na(+) transporter, TaHKT1;5-D, limits shoot Na(+) accumulation in bread wheat. Plant J. 80(3) : 516-526.   DOI
11 Cramer, G. R., K. Urano, S. Delrot, M. Pezzotti, and K. Shinozaki. 2011. Effects of abiotic stress on plants: A systems biology perspective. BMC Plant Bio. 11 : 163. doi: 10.1186/1471-2229-11-163.   DOI
12 Davenport, R. J., A. Munoz-Mayor, D. Jha, P. A. Essah, A. Rus, and M. Tester. 2007. The Na+ transporter AtHKT1;1 controls retrieval of Na+ from the xylem in Arabidopsis. Plant Cell Environ. 30(4) : 497-507.   DOI
13 Mahajan, S. and N. Tuteja. 2005. Cold, salinity and drought stresses: An overview. Arch. Biochem. Biophys. 444 (2) : 139-158.   DOI
14 Hanin, M., C. Ebel, M. Ngom, L. Laplaze, and K. Masmoudi. 2016. New insights on plant salt tolerance mechanisms and their potential use for breeding. Front. Plant Sci. 7 : 1787. doi: 10.3389/fpls.2016.01787.
15 Hoang, T. M. L., T. N. Tran, T. K. T. Nguyen, B. Williams, P. Wurm, S. Bellairs, and S. Mundree. 2016. Improvement of salinity stress tolerance in rice: Challenges and opportunities. Agronomy. 6(4) : 54. doi:10.3390/agronomy6040054.   DOI
16 Huyen, L. T. N., L. M. Cuc, A. M. Ismail, and L. H. Ham. 2012. Introgression the salinity tolerance QTLs Saltol into AS996, the elite rice variety of Vietnam. Am. J. Plant Sci. 3 : 981-987.   DOI
17 Lee, S.-H., B.-D. Hong, Y. An, and H.-M. Ro. 2003. Relation between growth condition of six upland-crops and soil salinity in reclaimed land. Korean J. Soil Sci. Fert. 36(2) : 66-71.
18 Lee, S. H., H. S. Bae, S. H. Lee, Y. Y. Oh, and J. H. Ryu. 2015. The society of agricultural research on reclaimed lands. pp. 88-103.
19 Moradi, F. and A. M. Ismail. 2007. Responses of photosynthesis, chlorophyll fluorescence and ROS-Scavenging systems to salt stress during seedling and reproductive stages in rice. Ann. Bot. 99(6) : 1161-1173.   DOI
20 Mori, I. K. and T. Kinoshita. 1987. Salt tolerance of rice callus clones. Rice Genetics Newsletter. 4 : 112-113.
21 Munns, R. and M. Tester. 2008. Mechanisms of salinity tolerance. Annu. Rev. Plant Biol. 59 : 651-681.   DOI
22 Murashige, T. and F. Skoog. 1962. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol. Plantarum. 15(3) : 473-497.   DOI
23 Noori, S. A. S. and T. McNeilly. 2000. Assessment of variability in salt tolerance based on seedling growth in Triticum durum Desf. Genet. Res. Crop Evol. 47 : 285-291.   DOI
24 Rahman, A., K. Nahar, J. Al Mahmud, M. Hasanuzzaman, M. S. Hossain, and M. Fujita. 2017. Salt stress tolerance in rice: Emerging role of exogenous phytoprotectants. Advances in International Rice Research. InTech, Rijeka, Croatia. pp. 139-174.
25 Reddy, I. N. B. L., B. K. Kim, I. S. Yoon, K. H. Kim, and T. R. Kwon. 2017. Salt tolerance in rice: Focus on mechanisms and approaches. Rice Science. 24(3) : 123-144.   DOI
26 Thomson, M. J., M. de Ocampo, J. Egdane, M. A. Rahman, A. G. Sajise, D. L. Adorada, E. Tumimbang-Raiz, E. Blumwald, Z. I. Seraj, R. K. Singh, G. B. Gregorio, and A. M. Ismail. 2010. Characterizing the Saltol quantitative trait locus for salinity tolerance in rice. Rice 3 : 148-160.   DOI
27 Ren, Z. H., J. P. Gao, L. G. Li, X. L. Cai, W. Huang, D. Y. Chao, M. Z. Zhu, Z. Y. Wang, S. Luan, and H. X. Lin. 2005. A rice quantitative trait locus for salt tolerance encodes a sodium transporter. Nat. Genet. 37(10) : 1141-1146.   DOI
28 Telem, R. S., S. H. Wani, N. B. Singh, R. Sadhukhan, and N. Mandal. 2016. Single nucleotide polymorphism (SNP) marker for abiotic stress tolerance in crop plants. Advances in Plant Breeding Strategies: Agronomic, Abiotic and Biotic Stress Traits. Springer, Cham. pp. 327-343. doi:10.1007/978-3-319-22518-0_9.
29 Thomson, M. J. and A. M. Ismail. 2016. Development of salt tolerant IR64 near isogenic lines through marker-assisted breeding. J. Crop Sci. Biotec. 19(5) : 373-381.   DOI
30 Vinod, K., S. G. Krishnan, N. N. Babu, M. Nagarajan, and A. Singh. 2013. Improving salt tolerance in rice: Looking beyond the conventional. Salt Stress in Plant: Signalling, Omics and Adaptations. Springer. New York. pp. 219-260.
31 Vu, H. T. T., D. D. Le, A. M. Ismail, and H. H. Le. 2012. Marker-assisted backcrossing (MABC) for improved salinity tolerance in rice (Oryza sativa L.) to cope with climate change in Vietnam. Aust. J. Crop Sci. 6(12) : 1649-1654.
32 Walia, H., C. Wilson, A. M. Ismail, P. Condamine, and T. J. Close. 2007. Genome-wide transcriptional analysis of salinity stressed japonica and indica rice genotypes during panicle initiation stage. Plant Mol. Biol. 63 : 609-623.   DOI