In this article, we find the approximate solutions of Abel differential equation (ADE) with uncertainty using residual power series (RPS) method. This method helps to calculate the sequence of solutions of ADE. Finally, numerical illustrations demonstrate the applicability of the method.
There are three objectives of this paper. First, we present an elegant and simple generalization of Abel's theorem (i .e. tile Abel summability (on the unit disk of the euclidean plane) is regular). Second, we consider the definition of Abel summability through lim (equation omitted) which immediately has clear connexctions with CeSARO summability and Cesaro sums (equation omitted). This approach examplifies some simple aspects of so-called Tauberian theorems of divergent series. Third, we present the applications of the previous results to find the limits of transition probabilities of homogeneous Marker chain. Finally, we explain why the original Abel's theorem which looks obvious is difficult to be proved, and can not be proved analytically.
To help solving intractable nonlinear evolution equations (NLEEs) of waves in the field of fluid dynamics we develop an algorithm to find new high order solutions of the class of Abel, Bernoulli, Chini and Riccati equations of the form y' = ayn + by + c, n > 1, with constant coefficients a, b, c. The role of this class of equations in NLEEs is explained in the introduction below. The basic algorithm to compute the coefficients of the power series solutions of the class, emerged long ago and is further developed in this paper. Practical application for hitherto unknown solutions is exemplified.
In this article, Adomian decomposition method (ADM), variation iteration method(VIM) and homotopy analysis method (HAM) for solving integro-differential equation with singular kernel have been investigated. Also,we study the existence and uniqueness of solutions and the convergence of present methods. The accuracy of the proposed method are illustrated with solving some numerical examples.
In the category of the group theoretic methods using invertible discrete group transformation, we give a useful relation between Emden-Fowler equations and nonlinear heat equation. In this paper, by means of appropriate transformations of discrete group analysis, the nonlinear hate equation transformed into the class of the Emden-Fowler equations. This approach shows that, under the group action, the solution of reference equation can be transformed into the solution of the transformed equation.
The two-dimensional finite difference time domain algorithm is used to numerically reconstruct the electron density profile in O-mode ultrashort pulse reflectometry. A Gaussian pulse is employed as the source of a probing electromagnetic wave. The Gaussian pulse duration is chosen in such a manner as to have its frequency spectrum cover the whole range of the plasma frequency. By using a number of numerical band-pass filters, it is possible to compute the time delays of the frequency components of the reflected signal from the plasma. The electron density profile is reconstructed by substituting the time delays into the Abel integral equation. As a result of simulation, the reconstructed electron density profile agrees well with the assumed profile.
In this paper, we study the fractional iterates of the exponential function. This is an unresolved problem, not due to a lack of a known solution, but because there are an innite number of solutions, and there is no agreement as to which solution is "best." We will approach the problem by rst solving Abel's functional equation ${\alpha}(e^x)={\alpha}(x)+1$ by perturbing the exponential function so as to produce a real xed point, allowing a unique holomorphic solution. We then use this solution to nd a solution to the unperturbed problem. However, this solution will depend on the way we rst perturbed the exponential function. Thus, we then strive to remove the dependence of the perturbed function. Finally, we produce a solution that is in a sense more natural than other solutions.
현재까지 발파해체는 건축물과 토목구조물들을 대상으로 하고 있으나 본 연구에서는 밀폐철재구조물(압력용기) 내부에 물을 채우고 폭약의 힘이 작용하는 해체에 관한 기초연구를 하였다. 일정양의 폭약을 밀폐압력용 기내에 넣고 완전 탄성체로 가정할 수 있는 물($H_2O$)을 압력전달 매개체로 하여 밀폐압력용기의 파괴양상을 관찰하였다. 이때 폭발압력은 Abel의 상태방정식을 이용하여 정량화 하였으며, 그 결과 압력전달 매개체(물)가 있을 경우 밀폐압력용기의 인장강도보다 작은 힘으로 파괴가 발생하였으며, 그렇지 않은 경우에는 약 7.1~8.5배의 폭발압력이 필요하였다. 또한, 압력전달 매개체가 없을 경우(공기만 존재) 폭발압력은 일정값에 도달하기 전까지 파괴에 영향을 미치지 못하고 완전 소산 또는 비산하는 현상을 나타내었다. 실험에 이용한 강철(steel)로 이루어진 밀폐압력용기는 파괴되는 양상에 있어서 대부분 탄성-소성파괴의 형태를 보였으며 최초 항복이 일어나는 지점은 용접부위의 경계부분으로 열소성 변형을 받았다고 판단되는 부분이었다.
Fractional kinetic equations are investigated in order to describe the various phenomena governed by anomalous reaction in dynamical systems with chaotic motion. Many authors have provided solutions of various families of fractional kinetic equations involving special functions. Here, in this paper, we aim at presenting solutions of certain general families of fractional kinetic equations using Prabhakar-type operators. The idea of present paper is motivated by Tomovski et al. [21].
A diagnostic tool has been proposed to convert the observed surface distribution of hydrogen recombination line intensities into the radial distributions of the electron temperature and the density in HII regions. The observed line intensity is given by an integral of the volume emission coefficient along the line of sight, which comprises the Abel type integral equation for the volume emission coefficient. As the emission coefficient at a position is determined by the temperature and density of electrons at the position, the local emission coefficient resulted from the solution of the Abel equation gives the radial distribution of the temperature and the density. A test has been done on the feasibility of our diagnostic approach to probing of HII regions. From model calculations of an HII region of pure hydrogen, we have theoretically generated the observed surface brightness of hydrogen recombination line intensities and analyzed them by our diagnostic tool. The resulting temperatures and densities are then compared with the model values. For this case of uniform density, errors in the derived density are not large at all the positions. For the electron temperature, however, the largest errors appear at the central part of the HII region. The errors in the derived temperature decrease with the radial distance, and become negligible in the outer part of the model HII region.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.