DOI QR코드

DOI QR Code

FINDING THE NATURAL SOLUTION TO f(f(x)) = exp(x)

  • Paulsen, William (Department of Mathematics and Statistics Arkansas State University)
  • Received : 2015.12.11
  • Accepted : 2016.03.03
  • Published : 2016.03.30

Abstract

In this paper, we study the fractional iterates of the exponential function. This is an unresolved problem, not due to a lack of a known solution, but because there are an innite number of solutions, and there is no agreement as to which solution is "best." We will approach the problem by rst solving Abel's functional equation ${\alpha}(e^x)={\alpha}(x)+1$ by perturbing the exponential function so as to produce a real xed point, allowing a unique holomorphic solution. We then use this solution to nd a solution to the unperturbed problem. However, this solution will depend on the way we rst perturbed the exponential function. Thus, we then strive to remove the dependence of the perturbed function. Finally, we produce a solution that is in a sense more natural than other solutions.

Keywords

References

  1. N. H. Abel, Untersuchung der Functionen zweier unabhangig veranderlichen $Gro{\beta}en$ x und y, wie f(x, y), welche die Eigenschaft haben, ..., Journal fur die reine und angewandte Mathematik, 1 (1826), 11-15.
  2. C. C. Cowen, Analytic solutions of Bottcher's functional equation in the unit disk, Aequationes Mathematicae 24 (1982), 187-194. doi:10.1007/BF02193043
  3. P. Fatou, Sur les equations fonctionelles, Bull. Soc. Math. France 47 (1919), 161-271.
  4. E. Jabotinsky, Analytic iteration. Trans. Amer. Math. Soc., 108 (1963), 457-477. https://doi.org/10.1090/S0002-9947-1963-0155971-X
  5. H. Kneser, Reelle analytishe Losungen der Gleichung ${\varphi}({\varphi}(x)) = e^{x}$ und verwandter Funktionalgleichungen, J. reine angew. Math. 187 (1950), 56-67.
  6. G. Koenigs, Recherches sur les integrales de certaines equations fonctionelles, Annales Scientifiques de l'Ecole Normale Superieure, 1 (3, Supplement) (1884), 3-41. https://doi.org/10.24033/asens.247
  7. D. Kouznetsov, Solution of F(z +1) = exp(F(z)) in the complex z-plane, Mathematics of Computation 78: 267 (2009), 1647-1670. https://doi.org/10.1090/S0025-5718-09-02188-7
  8. M. Kuczma, B. Choczewski, and R. Ger, Iterative Functional Equations, Cambridge University Press, Cambridge, 1990.
  9. H. O. Peitgen and D. Saupe, editors, The Science of Fractal Images, Springer-Verlag, New York, 1988.
  10. J. Ritt, On the iteration of rational functions, Trans. Amer. Math. Soc. 21:3 (1920), 348-356. doi:10.1090/S0002-9947-1920-1501149-6
  11. E. Schroder, Uber iterierte Funktionen, Math. Ann. 2 (1871), 296-322.
  12. H. Trappmann and D. Kouznetsov, Uniqueness of holomorphic Abel functions at a complex fixed point pair, Aequationes Mathematicae, 81:1 (2011), 65-76. https://doi.org/10.1007/s00010-010-0021-6
  13. P. Walker, The exponential of iteration of $e^x$ - 1, Proc. Am. Math. Soc. 110:3 (1990), 611-620. https://doi.org/10.1090/S0002-9939-1990-1023348-2
  14. P. Walker, On the Solutions of an Abelian Functional Equation, Journal of Mathematical Analysis and Applications 155 (1991), 93-110. https://doi.org/10.1016/0022-247X(91)90029-Y

Cited by

  1. Solving F(z + 1) = b F(z) in the complex plane pp.1572-9044, 2017, https://doi.org/10.1007/s10444-017-9524-1