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FUZZY SOLUTIONS OF ABEL DIFFERENTIAL EQUATIONS

USING RESIDUAL POWER SERIES METHOD

N. NITHYADEVI∗, P. PRAKASH

Abstract. In this article, we find the approximate solutions of Abel differ-

ential equation (ADE) with uncertainty using residual power series (RPS)

method. This method helps to calculate the sequence of solutions of
ADE. Finally, numerical illustrations demonstrate the applicability of the

method.
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1. Introduction

Differential equations attract a great deal of interest in modeling various prob-
lems exist in physics and computer processes. Almost all specialists have fre-
quently used crisp ordinary differential equations to bring most reviews of the
problems recognizable. The purpose of this paper is to extend the RPS method
to find numerical approximation of fuzzy ADE (IVP). This approach is using to
solve problems in the field of engineering and science with power series solutions.
We consider the following nonlinear fuzzy ADE:

g̃′(t) = P g̃3(t) +Qg̃2(t) +Rg̃(t) + S, t > 0 (1)

with the fuzzy initial condition

g̃(0) = g̃0, (2)

where g̃3(t) ̸= 0, P , Q, R and S ∈ ℜ, g̃0 is an arbitrary fuzzy number, and g̃(t)
is an unknown fuzzy function of the crisp variable t. However, assume IVP (1)
and (2) each t > 0 has a unique fuzzy solution. RF denotes the set of all fuzzy
numbers defined in R. The model helps develop existing systems for processing
power series formulae by adding a specific selective structural constraint [4, 7,
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11, 12, 13, 14]. Again, we ask for many attributes to explain and review specific
methods for dealing with the various problems that arise in healing [1, 6, 9, 10].
Numerical solutions are found to demonstrate the functionality and performance
of the RPS method.

2. Preliminaries

The important definitions and related properties of fuzzy calculus are in this
part.

Definition 2.1. [5] Let u is a fuzzy number iff [u]r is compact convex subset of
ℜ for r ∈ [0, 1] and [u]1 ̸= ϕ. If u is a fuzzy number, then [u]r = [u1(r), u2(r)],
for each s ∈ [u]r, r ∈ [0, 1], where u1(r) =min{s} , u2(r) =max{s} and [u]r is
called r−cut representation form.

Theorem 2.2. [5] Let u1, u2 : [0, 1] → ℜ satisfy the below conditions:

(1) u1 is a bounded non decreasing function,
(2) u2 is a bounded non increasing function,
(3) u1(1) ≤ u2(1),
(4) limr→k−u1(r) = u1(k) and limr→k−u2(r) = u2(k), k ∈ (0, 1],
(5) limr→0+u1(r) = u1(0) and limr→0+u2(r) = u2(0).

Then u : ℜ → [0, 1], defined by u(s) = sup{r|u1(r) ≤ s ≤ u2(r)} is a fuzzy
number with parameter [u1(r), u2(r)].

Definition 2.3. [5] If u and v are two fuzzy numbers, for each r ∈ [0, 1], we’ve

(1) [u+ v]r = [u]r + [v]r = [u1r + v1r, u2r + v2r],
(2) [λu]r = λ[u]r = [min{λu1r, λu2r}, max{λu1r, λu2r}],
(3) [uv]r = [u]r[v]r = [min{u1rv1r, u1rv2r, u2rv1r, u2rv2r},

max{u1rv1r, u1rv2r, u2rv1r, u2rv2r}],
(4) u = v if [u]r = [v]r if and only if u1r = v1r and u2r = v2r, collection

of all fuzzy numbers with addition and scalar multiplication is a convex
cone.

Definition 2.4. [8] Let u, v and w ∈ ℜF , such that u = v+w; then w is called
the Hukuhara differentiable of u and v, denoted by u⊖v. Let u⊖v ̸= u+(−1)v =
u− v is Hukuhara differentiable, then [u⊖ v]r = [u1r − v1r, u2r − v2r].

Definition 2.5. [2] Let g is strongly differentiable at t0 ∈ [a, b] and g : [a, b] →
ℜF such that

(1) For each h > 0, the Hukuhara differences g(t0+h)⊖g(t0), g(t0)⊖g(t0−h)
and

limh→0+
g(t0 + h)⊖ g(t0)

h
= limh→0+

g(t0)⊖ g(t0 − h)

h
= g′(t0) (3)

(2) For each h > 0, the Hukuhara differences g(t0)⊖g(t0+h), g(t0−h)⊖g(t0)
and

limh→0+
g(t0)⊖ g(t0 + h)

−h
= limh→0+

g(t0 − h)⊖ g(t0)

−h
= g′(t0). (4)
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Theorem 2.6. [3] For each r ∈ [0, 1], g : [a, b] → ℜF and [g(t)]r = [g1r(t), g2r(t)].
Such that g1r and g2r are differentiable functions on [a, b]

(1) If g is (1)−differentiable on [a, b] then [g′(t)]r = [g′1r(t), g′2r(t)],
(2) If g is (2)−differentiable on [a, b] then [g′(t)]r = [g′2r(t), g′1r(t)].

Theorem 2.7. [3] Let g : [a, b] → ℜF be a fuzzy-valued function. For fixed
t0 ∈ [a, b] and ϵ > 0 if there exist δ > 0 such that |t − t0| < δ which implies
d(g(t), g(t0)) < ϵ, then we say that g is continuous at t0.

3. Abel differential equation

Consider the nonlinear first order Abel type fuzzy differential equations,

g̃′(t) = P g̃3(t) +Qg̃2(t) +Rg̃(t) + S, t > 0. (5)

with the fuzzy initial condition

g̃(0) = g̃0, (6)

where P ̸= 0, P , Q, R and S ∈ ℜ, g̃(t) = [0, T ] → ℜF and g̃0 ∈ ℜF . To
construct the section of fuzzy Abel differential equation (FADE) (5) based on
the type of differentiability and fuzzy initial condition (6), we consider the r−
cut level representation of g̃′(t), g̃3(t), g̃2(t), g̃(t) and g̃(0) as [g′1r(t), g′2r(t)],
[g31r(t), g32r(t)], [g

2
1r(t), g22r(t)], [g1r(t), g2r(t)], [g0,1r(t), g0,2r(t)], respectively.

Consequently, the FADEs (5) and (6) should be written as follows:

[g̃′(t)]r = P [g̃3(t)]r +Q[g̃2(t)]r +R[g̃(t)]r + S, t > 0. (7)

with the initial condition

[g̃(0)]r = [g̃0]
r. (8)

Now, the residual power series for solving initial value problems (5) and (6) in r-
cut representation that converted to crisp systems of ODEs. To obtain the fuzzy
solution g̃(t) for the initial value problems (5) and (6), two cases are considered
according to kinds of differentiability, where g̃(t) is either (1)− differentiable or
(2)− differentiable.

Case 1: If g̃(t) is (1)− differentiable, then initial value problems (5) and (6)
can be converted into the following system:

g′1r(t) = Pg31r(t) +Qg21r(t) +Rg1r(t) + S,
g′2r(t) = Pg32r(t) +Qg22r(t) +Rg2r(t) + S,

(9)

with the initial condition

g1r(0) = g0,1r,
g2r(0) = g0,2r,

(10)

Case 2: If g̃(t) is (2)− differentiable, then initial value problems (5) and (6) can
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be converted into the following system:

g′1r(t) = Pg32r(t) +Qg22r(t) +Rg2r(t) + S,
g′2r(t) = Pg31r(t) +Qg21r(t) +Rg1r(t) + S,

(11)

with the initial condition

g1r(0) = g0,1r,
g2r(0) = g0,2r,

(12)

4. The Residual Power Series method for the fuzzy Abel differential
equation

In this section, we obtain the (1)-differentiable solution for the fuzzy Abel
differential equations (9) and (10) by employing the procedures of residual power
series method. Further, same procedure can be followed (2)-differentiable, we
assume that g̃(t) is (1)- differentiable, therefore the solutions of equations (11)
and (12) at t0 = 0 have the following forms:

g1r(t) =
∑∞

k=0 pkt
k,

g2r(t) =
∑∞

k=0 qkt
k.

(13)

By using the initial conditions g1r(0) = g0,1r = p0 and g2r(0) = g0,2r = q0 as
initial approximation, the expression of (13) can be written as:

g1r(t) = g0,1r +
∑∞

k=1 pkt
k,

g2r(t) = g0,2r +
∑∞

k=1 qkt
k.

(14)

Consequently, the ith− truncated series solutions of g1r(t) and g2r(t) can be
written as:

gi,1r(t) = g0,1r +
∑i

k=1 pkt
k,

gi,2r(t) = g0,2r +
∑i

k=1 qkt
k.

(15)

According to the residual power series approach, the ith− residual functions of
system (9) and (10) are defined by

Resi,1r(t) = g′1r(t)− Pg31r(t)−Qg21r(t)−Rg1r(t)− S,
Resi,2r(t) = g′2r(t)− Pg32r(t)−Qg22r(t)−Rg2r(t)− S.

(16)

where the ∞th− residual functions are given by

Res∞,1r(t)
= limi→∞Resi,1r(t) = g′1r(t)− Pg31r(t)−Qg21r(t)−Rg1r(t)− S,
Res∞,2r(t)
= limi→∞Resi,2r(t) = g′2r(t)− Pg32r(t)−Qg22r(t)−Rg2r(t)− S,

(17)

As in residual power series, put Res∞,ir(t) = 0 for each t ∈ [0, R], R is radius of
convergence and i = {1, 2}, which are infinitely differentiable functions at t = 0.

Then we get dk−1

dtk−1Res∞,ir(0) = dk−1

dtk−1Resk,ir(0) = 0, for k = 1, 2, 3, . . . j. The
residual power series pn and qn , n ≥ 1. To find the coefficients p1 and q1 ,
substitute g1,1r(t) = g0,1r + p1t and g1,2r(t) = g0,2r + q1t to apply the residual
functions, Res1,1r(t) and Res1,2r(t), at i = 1 of (16) we get:
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Res1,1r(t) = g′1,1r(t)− Pg31,1r(t)−Qg21,1r(t)−Rg1,1r(t)− S,

= (g0,1r + p1t)
′ − P (g0,1r + p1t)

3 −Q (g0,1r + p1t)
2 −R (g0,1r + p1t)− S,

= p1 − P (g0,1r + p1t)
3 −Q (g0,1r + p1t)

2 −R (g0,1r + p1t)− S.

Res1,2r(t) = g′1,2r(t)− Pg31,2r(t)−Qg21,2r(t)−Rg1,2r(t)− S,

= (g0,2r + q1t)
′ − P (g0,2r + q1t)

3 −Q (g0,2r + q1t)
2 −R (g0,2r + q1t)− S,

= q1 − P (g0,2r + q1t)
3 −Q (g0,2r + q1t)

2 −R (g0,2r + q1t)− S.
Using Res1,1r(0) = 0 and Res1,2r(0) = 0 in (14) we get results to
p1 = P g̃30,1r +Qg̃20,1r +Rg̃0,1r + S and q1 = P g̃30,2r +Qg̃20,2r +Rg̃0,2r + S .
Then the first approximations are:

g1,1r(t) = p0 +
(
Pp30 +Qp20 +Rp0 + S

)
t,

g1,2r(t) = q0 +
(
Pq30 +Qq20 +Rq0 + S

)
t.

(18)

For i = 2, the second approximations are:

g2,1r(t) = p0 +
(
Pp30 +Qp20 +Rp0 + S

)
t+ p2t

2,
g2,2r(t) = q0 +

(
Pq30 +Qq20 +Rq0 + S

)
t+ q2t

2.
(19)

The residual functions, Res2,1r(t) and Res2,2r(t) of (16) such that

Res2,1r(t) = g′2,1r(t)− Pg32,1r(t)−Qg22,1r(t)−Rg2,1r(t)− S,

=
((
Pp30 +Qp20 +Rp0 + S

)
+ 2p2t

)
−P

(
p0 +

(
Pp30 +Qp20 +Rp0 + S

)
t+ p2t

2
)3

−Q
(
p0 +

(
Pp30 +Qp20 +Rp0 + S

)
t+ p2t

2
)2

−R
(
p0 +

(
Pp30 +Qp20 +Rp0 + S

)
t+ p2t

2
)
− S,

Res2,2r(t) = g′2,2r(t)− Pg32,2r(t)−Qg22,2r(t)−Rg2,2r(t)− S,

=
((
Pq30 +Qq20 +Rq0 + S

)
+ 2q2t

)
− P

(
q0 +

(
Pq30 +Qq20 +Rq0 + S

)
t+ q2t

2
)3

−Q
(
q0 +

(
Pq30 +Qq20 +Rq0 + S

)
t+ q2t

2
)2

−R
(
q0 +

(
Pq30 +Qq20 +Rq0 + S

)
t+ q2t

2
)
− S.

Now, differentiality both sides of Res2,1r(t) and Res2,2r(t) we get

d
dtRes2,1r(t) =

d
dt

[
g′2,1r(t)− Pg32,1r(t)−Qg22,1r(t)−Rg2,1r(t)− S

]
,

= d
dt

[((
Pp30 +Qp20 +Rp0 + S

)
+ 2p2t

)]
− d

dt

[
P
(
p0 +

(
Pp30 +Qp20 +Rp0 + S

)
t+ p2t

2
)3]

− d
dt

[
Q
(
p0 +

(
Pp30 +Qp20 +Rp0 + S

)
t+ p2t

2
)2]

− d
dt

[
R
(
p0 +

(
Pp30 +Qp20 +Rp0 + S

)
t+ p2t

2
)]

− d
dt [S] ,
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d
dtRes2,1r(t) = 2p2 − 3P

(
p0 +

(
Pp30 +Qp20 +Rp0 + S

)
t+ p2t

2
)2

×
((
Pp30 +Qp20 +Rp0 + S

)
+ 2p2t

)
−2Q

(
p0 +

(
Pp30 +Qp20 +Rp0 + S

)
t+ p2t

2
) ((

Pp30 +Qp20 +Rp0 + S
)
+ 2p2t

)
−R

((
Pp30 +Qp20 +Rp0 + S

)
+ 2p2t

)
,

d
dtRes2,2r(t) =

d
dt

[
g′2,2r(t)− Pg32,2r(t)−Qg22,2r(t)−Rg2,2r(t)− S

]
,

= d
dt

[((
Pq30 +Qq20 +Rq0 + S

)
+ 2q2t

)]
− d

dt

[
P
(
q0 +

(
Pq30 +Qq20 +Rq0 + S

)
t+ q2t

2
)3]

− d
dt

[
Q
(
q0 +

(
Pq30 +Qq20 +Rq0 + S

)
t+ q2t

2
)2]

− d
dt

[
R
(
q0 +

(
Pq30 +Qq20 +Rq0 + S

)
t+ q2t

2
)]

− d
dt [S] ,

d
dtRes2,2r(t) = 2q2 − 3P

(
q0 +

(
Pq30 +Qq20 +Rq0 + S

)
t+ q2t

2
)2

×
((
Pq30 +Qq20 +Rq0 + S

)
+ 2q2t

)
−2Q

(
q0 +

(
Pq30 +Qq20 +Rq0 + S

)
t+ q2t

2
) ((

Pq30 +Qq20 +Rq0 + S
)
+ 2q2t

)
−R

((
Pq30 +Qq20 +Rq0 + S

)
+ 2q2t

)
,

by using d
dtRes2,1r(0) = 0 and d

dtRes2,2r(0) = 0, it can be deduced to the
residual functions

p2 = 3
2Pp20p1 +Qp0p1 +

1
2Rp1,

q2 = 3
2Pq20q1 +Qq0q1 +

1
2Rq1.

(20)

Then the second approximations are:

g2,1r(t) = p0 +
(
Pp30 +Qp20 +Rp0 + S

)
t+

(
3
2Pp20p1 +Qp0p1 +

1
2Rp1

)
t2,

g2,2r(t) = q0 +
(
Pq30 +Qq20 +Rq0 + S

)
t+

(
3
2Pq20q1 +Qq0q1 +

1
2Rq1

)
t2.

(21)

For i = 3, the third approximations are g3,1r(t) and g3,2r(t) into the residual
functions, Res3,1r(t) and Res3,2r(t) of (16) utilized the residual power series
d2

dt2
Res3,1r(0) = 0 and d2

dt2
Res3,2r(0) = 0. Then we get the third coefficients

given by

p3 = P
(
p2p

2
0 + p21p0

)
+ 1

3Q
(
2p0p2 + p21

)
+ 1

3Rp2,
q3 = P

(
q2q

2
0 + q21q0

)
+ 1

3Q
(
2q0q2 + q21

)
+ 1

3Rq2.
(22)

For i = 4, the fourth approximations are g4,1r(t) and g4,2r(t) into the residual
functions, Res4,1r(t) and Res4,2r(t) of (16) utilized the residual power series
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d3

dt3
Res4,1r(0) = 0 and d3

dt3
Res4,2r(0) = 0. Then we get the third coefficients

given by

p4 = 1
4P

(
p31 + 6p0p1p2 + 3p20p3

)
+ 1

2Q (p1p2 + p0p3) +
1
4Rp3,

q4 = 1
4P

(
q31 + 6q0q1q2 + 3q20q3

)
+ 1

2Q (q1q2 + q0q3) +
1
4Rq3.

(23)

By continuing the same procedure upto arbitrary order i = n using residual

power series facts d(n−1)

dt(n−1)Resn,1r(0) = 0 and d(n−1)

dt(n−1)Resn,2r(0) = 0, it can be
deduced that the residual functions pn and qn. Similarly, g̃(t) is (2)− solution
for the (2)− differentiable fuzzy Abel differential equation (11) and (12) can be
obtained.

5. Numerical Examples

Example 5.1. Consider the following Abel initial value problem,

g̃′(t)− 3g̃(t)3 + g̃(t) = 0, t > 0, (24)

with the fuzzy initial condition

[g̃(0)]r = [ 7
24 + 1

24r,
101
300 − 1

300r], r ∈ [0, 1]. (25)

In particular for r = 1, the solution of (24) with crisp initial condition g̃(0) = 1
3

as follows:

g̃(t) = 1√
6e2t+3

. (26)

we represent the parametric forms of (24) as follows:

g′1r(t) = 3g1r(t)
3 − g1r(t),

g′2r(t) = 3g2r(t)
3 − g2r(t),

(27)

with the fuzzy initial condition

g1r(0) =
7
24 + 1

24r,
g2r(0) =

101
300 − 1

300r.
(28)

By using the initial conditions g1r(0) = g0,1r = p0 and g2r(0) = g0,2r = q0 as
initial approximations, the expression of (28) can be written as g1r(0) =

7
24+

1
24r

and g2r(0) =
101
300 − 1

300r, the residual power series solutions g′1r(t) and g′2r(t) of
system (27) can be written as:

g1r(t) =
7
24 + 1

24r + p1t+ p2t
2 + . . .+ pit

i + . . . ,
g2r(t) =

101
300 − 1

300r + q1t+ q2t
2 + . . .+ qit

i + . . . .
(29)

By utilizing the residual power series d(i−1)

dt(i−1)Resi,1r(0) = 0 and d(i−1)

dt(i−1)Resi,2r(0) =
0, for i = 1, 2 . . ., the terms of pi and qi are:

p0 = 7
24 + 1

24r,

p1 = 1
4608 (r + 7)

(
r2 + 14r − 143

)
,

p2 = 1
589824 (r − 1) (r + 15) (r + 7)

(
r2 + 14r − 143

)
,
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p3 = 1
339738624

(
5r4 + 140r3 + 702r2 − 3892r − 13339

)
(r + 7)

(
r2 + 14r − 143

)
,

...
and
q0 = 101

300 − 1
300r,

q1 = 1
9000000 (101− r)

(
r2 − 202r − 19799

)
,

q2 = 1
180000000000 (101− r)

(
r2 − 202r − 19799

)
(1− r) (201− r),

q3 = 1
3240000000000000

(101− r)
(
r2 − 202r − 19799

) (
r4 − 404r3 + 37206r2 + 726796r − 80763599

)
,

...
and so on.
If r = 1, then the residual power series solution becomes

g(t) = 1
3 − 2

9 t+
4
81 t

3 − 2
243 t

4 + . . . . . . (30)

The numerical results of Example 1 for various t in [0, 1] is shown in Table 1 and
Fig 1.

Table 1. Value of g(t)

t Exact solution RPSM solution Absolute Error
0 [0.333333333333333] [0.333333333333333] [0]
0.1 [0.311159544858791] [0.311159670781893] [1.26 ×10−7]
0.2 [0.289266951196178] [0.289270781893004] [123 ×10−6]
0.3 [0.267905825643850] [0.267933333333333] [2.75 ×10−5]
0.4 [0.247285140856786] [0.247394238683128] [1.09 ×10−4]
0.5 [0.227568600277633] [0.227880658436214] [52 ×10−4]
0.6 [0.208874799971873] [0.209600000000000] [7.25 ×10−4]
0.7 [0.191280479364827] [0.192739917695473] [1.46 ×10−3]
0.8 [0.174825723730926] [0.177468312757202] [2.64 ×10−3]
0.9 [0.159520099726950] [0.163933333333333] [161 ×10−3]
1.0 [0.145348934559835] [0.152263374485597] [6.91 ×10−3]
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Fig. 1 Value of f(x)

Example 5.2. Consider the following Abel initial value problem,

g̃′(t) + g̃(t)3 − g̃(t) = 0, t > 0, (31)

with the fuzzy initial condition

[g̃(0)]r = [ 7
24 + 1

24r,
101
300 − 1

300r], r ∈ [0, 1]. (32)

In particular for r = 1, the solution of (31) with crisp initial condition g̃(0) = 1
3

can be found as:

g̃(t) = et√
e2t+8

. (33)

we represent the parametric forms of (31) as follows:

g′1r(t) = g1r(t)− g1r(t)
3,

g′2r(t) = g1r(t)− g2r(t)
3.

(34)

with the fuzzy initial condition

g1r(0) =
7
24 + 1

24r,
g2r(0) =

101
300 − 1

300r.
(35)

By using the initial conditions g1r(0) = g0,1r = p0 and g2r(0) = g0,2r = q0 as
initial approximations. Then, the expression of (32) can be written as g1r(0) =
7
24 + 1

24r and g2r(0) =
101
300 − 1

300r, the residual power series solutions g′1r(t) and
g′2r(t) of system (241) can be written as:

g1r(t) =
7
24 + 1

24r + p1t+ p2t
2 + . . .+ pit

i + . . . ,
g2r(t) =

101
300 − 1

300r + q1t+ q2t
2 + . . .+ qit

i + . . . .
(36)

By utilizing the residual power series d(i−1)

dt(i−1)Resi,1r(0) = 0 and d(i−1)

dt(i−1)Resi,2r(0) =
0, for i = 1, 2 . . ., the terms of pi and qi are:
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p0 = 7
24 + 1

24r,

p1 = 1
13824 (r + 7) (17− r) (r + 31),

p2 = 1
5308416 (r + 7) (r − 17) (r + 31)

(
r2 + 14r − 143

)
,

p3 = 1
9172942848

(
5r4 + 140r3 − 834r2 − 25396r + 9701

)
(r + 7) (17− r) (r + 31),

...
and
q0 = 101

300 − 1
300r,

q1 = 1
27000000 (r − 101) (r + 199) (r − 401),

q2 = 1
1620000000000 (401− r) (r − 101) (r + 199)

(
r2 − 202r − 19799

)
,

q3 = 1
87480000000000000

(r − 101) (r + 199) (r − 401)
(
r4 − 404r3 − 10794r2 + 10422796r − 90411599

)
,

...
and so on.
If r = 1, then the residual power series solution

g(t) = 1
3 + 8

27 t+
8
81 t

2 − 16
2187 t

3 − 440
19683 t

4 + . . . . . . (37)

The numerical results of Example 2 for various t in [0, 1] is shown in Table 2 and
Fig 2.

Table 2. Value of g(t)

t Exact solution RPSM solution Absolute Error
0 [0.333333333333333] [0.333333333333333] [0]
0.1 [0.363940973764747] [0.363941065894427] [9.21 ×10−8]
0.2 [0.396446001535819] [0.396448915307626] [2.91 ×10−6]
0.3 [0.430710791531335] [0.430732510288066] [2.17 ×10−5]
0.4 [0.466524705168791] [0.466613829192704] [8.91 ×10−5]
0.5 [0.503598763165705] [0.503861200020322] [2.62 ×10−4]
0.6 [0.541565802609583] [0.542189300411523] [6.23 ×10−4]
0.7 [0.579987893064792] [0.581259157648732] [1.27 ×10−3]
0.8 [0.618372060898173] [0.620678148656201] [2.31 ×10−3]
0.9 [0.656194098474177] [0.660000000000000] [121 ×10−3]
1.0 [0.692928605869062] [0.698724787888025] [310 ×10−3]
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//
Fig. 2 Value of f(x)

6. Conclusions

In this paper, the RPS has been used to examine the convergence analysis
to fuzzy ADE. This technique may be applied immediately by evaluating differ-
ent starting predictions without being generally separated or modified. Simula-
tion findings have demonstrated the efficiency and dependability of the current
method. According to the findings, the RPS technique is extremely efficient
and powerful for solving nonlinear fuzzy Abel differential equations with less
computations and effort.
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