• Title/Summary/Keyword: AZO film

Search Result 219, Processing Time 0.027 seconds

Crystallization and Optical Properties of Transparent AZO Thin Films (AZO 투명전극의 결정성과 광학적 특성)

  • Oh, Teresa
    • Journal of the Korean Vacuum Society
    • /
    • v.21 no.4
    • /
    • pp.212-218
    • /
    • 2012
  • The optical properties of AZO thin films prepared by the RF mangnetron sputtering system was studied to research the dependance of chemical properties of substrate. The substrate was the SiOC film deposited by Inductively coupled plasma chemical vapor deposition with various gas flow rate of $O_2$ and Ar (DMDMOS). In accordance with the increase of Ar gas flow rates, the Si-O bond in the SiOC film increased and then progressed the amorphism. The roughness of AZO grown on SiOC film with high degree of amorphism decreased and then improved the flatness of surfaces. Moreover, the ultra violet emission with high intensity was spontaneously induced in the AZO film growed on SiOC film with high degree of amorphism.

Electrical Conduction Mechanism of AZO Thin Film and Photo-Electric Conversion Efficiency of Film-Typed Dye Sensitized Solar Cell (AZO 박막의 전기전도특성 및 필름형 염료 태양전지의 광전 변환 특성)

  • Kwak, Dong-Joo
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.4
    • /
    • pp.66-72
    • /
    • 2010
  • In this paper, AZO thin film was deposited on polyethylene terephthalate(PET) substrate by r. f. magnetron sputtering method from a ZnO target mixed with 2[wt%] Al2O3. The flexible film-typed dye sensitized solar cell(F-DSC) was fabricated and photo-electric conversion efficiency was investigated. The results showed that the minimum resistivity and the maximum deposition rate of AZO conducting film were recorded as $1.8{\times}10^{-3}[{\Omega}{\cdot}cm]$ and 25.5[nm/min], respectively at r.f. power of 220[W]. From the analysis of XPS data an improvement of electrical resistivity or an increase in carrier concentration with increasing sputtering power may be related to the generation of lattice imperfections as a result of increasing component ratio of O1s/Zn2p, which generates donor carriers or active growth of crystalline grain. The photo-electric conversion efficiency of F-DSC with AZO conducting electrode was over 2.79[%], which was comparable as that with commercially available ITO electrode.

Adhesion Change of AZO/PET Film by ZrCu Insertion Layer

  • Ko, Sang-Won;Jung, Jong-Gook;Park, Kyeong-Soon;Lim, Sil-Mook
    • Journal of the Korean institute of surface engineering
    • /
    • v.49 no.3
    • /
    • pp.252-259
    • /
    • 2016
  • In order to form an aluminum-doped zinc oxide (AZO) transparent electrode film on a polyethylene terephthalate (PET) substrate used for a flexible display substrate, the AZO transparent electrode was produced at low temperature without substrate heating. Even though the produced electrode showed characteristic optical transmittance of 90 % (at 550 nm) and sheet resistance within $100{\Omega}/sq$, cracks occurred 10 minutes after loading applied 2 mm radius of curvature, and the sheet resistance increased linearly. An insertion layer of ZrCu was formed between the AZO film and the PET substrate to suppress the generation of cracks on the AZO film. It was verified that the crack was not generated 30 minutes after the loading of 2 mm radius of curvature, and no increase in sheet resistance was recorded. There was also not cracks in the dynamic bending test of 4 mm radius, but surface resistance was slightly increased. As a result, the ZrCu insertion film improved the interfacial adhesion between the substrate and AZO film layer without increasing sheet resistance and decreasing transmittance.

AI doped ZnO thin film deposited with $O_2$ gas flow rate (산소 가스 유량비에 따라 제작한 Al이 도핑된 ZnO 박막)

  • Cho, Bum-Jin;Keum, Min-Jong;Kim, Kyung-Hwan
    • Proceedings of the KIEE Conference
    • /
    • 2006.10a
    • /
    • pp.67-68
    • /
    • 2006
  • We prepared the AZO thin film with different $O_2$ gas flow rate. the AZO thin films were deposited on glass substrate at room temperature, working gas pressure of 1mTorr. the electrical, structural and optical properties of AZO thin films were investigated by using Hall Effect measurement system, X-ray Diffractometer (XRD) and UV-VIS spectrometer. From the results, we could obtain that AZO thin film with low resistivity of $8.5{\times}10^{-4}{\Omega}cm$ was exhibited in specific $O_2$ gas flow rate. Also, the transmittance of over 80% in visible range was observed in specific $O_2$ gas flow rate. In all of the AZO thin film with the transmittance of over 80%, diffraction peak of (002) direction was observed, while amorphous peak was observed in the AZO thin film with the low transmittance.

  • PDF

Double Textured AZO Film and Glass Substrate by Wet Etching Method for Solar Cell Application

  • Jeong, Won-Seok;Nam, Sang-Hun;Bu, Jin-Hyo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.594-594
    • /
    • 2012
  • Al doped ZnO (AZO) thin films were deposited on textured glass substrate by magnetron sputtering method. Also, AZO films on textured glass were etched by hydrochloric acid (HCl). Average thickness of etched AZO films are 90 nm. We observed morphology of AZO film by AFM with various etchant concentration and etching time. Etched AZO films have low resistivity and high haze. The surface RMS roughness of AZO film was increased from 53.8 nm to 84.5 nm. The haze ratio was also enhanced in above 700 nm of wavelength due to light trapping effect was increased by rough AZO surface. The etched AZO films on textured glass are applicable to fabricate solar cell.

  • PDF

Thermal Treated Al-doped Zinc Oxide (AZO) Film-embedding UV Sensors

  • Kim, Jun-Dong;Yun, Ju-Hyeong;Ji, Sang-Won;Park, Yun-Chang;Anderson, Wayne A.;Han, Seok-Gyu;Kim, Yeong-Guk;Kim, Jae-Hyeon;Anderson, Wayne A.;Lee, Jeong-Ho;Lee, Jun-Sin
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.90-90
    • /
    • 2011
  • Transparent conducting oxide (TCO) films have been intensively utilized in the electric applications, such as, displays, lightings and solar cells due to the good electric conductivity with an excellent transmittance of the visible light. We, herein present an excellent Al-doped ZnO film (AZO), which has been fabricated by co-sputtering method. An as-deposited AZO film had an optical transmittance of 84.78% at 550 nm and a resistivity of $7.8{\times}10^{-3}{\Omega}cm$. A rapid annealing process significantly improved the optical transmittance and electrical resistivity of the AZO film to 99.67% and $1{\times}10^{-3}{\Omega}cm$, respectively. The fabricated AZO film was fabricated for a metal-semiconductor-metal (MSM) structure. The AZO film-embedding MSM device was highly responsive to a UV light.

  • PDF

Structural, Optical, and Electrical Properties of Sputtered Al doped ZnO Thin Film Under Various RF Powers (RF 파워에 따라 스퍼터된 Al doped ZnO 박막의 구조적, 광학적, 전기적 특성)

  • Kim, Jong-Wook;Kim, Deok-Kyu;Kim, Hong-Bae
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.3
    • /
    • pp.177-181
    • /
    • 2011
  • We have studied structural, optical, and electrical properties of the Al-doped ZnO (AZO) thin films being usable in transparent conducting oxides. The AZO thin films were deposited on the corning 1737 glass plate by the RF magnetron sputtering system. To find optimal properties of AZO for transparent conducting oxides, the RF power in sputtering process was varied as 40 W, 60 W, and 80 W, respectively. As RF power increased, the crystallinity of AZO thin film was decreased, the optical bandgap of AZO thin film increased. The transmittance of the film was over 80% in the visible light range regardless of the changes in RF power. The measurement of Hall effect characterizes the whole thin film as n-type, and the electrical property was improved with increasing RF power. The structural, optical, and electrical properties of the AZO thin films were affected by Al dopant content in AZO thin film.

Improved Electrical Properties of Indium Gallium Zinc Oxide Thin-film Transistors by AZO/Ag/AZO Multilayer Transparent Electrode

  • No, Yeong-Su;Yang, Jeong-Do;Park, Dong-Hui;Wi, Chang-Hwan;Jo, Se-Hui;Kim, Tae-Hwan;Choe, Won-Guk
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.443-443
    • /
    • 2012
  • We fabricated a-IGZO TFT with AZO/Ag/AZO transparent multilayer source/drain contacts by rf magnetron sputtering. Enhanced electrical device performance of a-IGZO TFT with AZO/Ag/AZO multilayer S/D electrodes (W/L = = 400/50 mm) was achieved with a subs-threshold swing of 3.78 V/dec, a minimum off-current of 10-12 A, a threshold voltage of 1.80 V, a field effect mobility of 10.86 cm2/Vs, and an on/off ration of 9x109. It demonstrated the potential application of the AZO/Ag/AZO film as a promising S/D contact material for the fabrication of the high performance TFTs.

  • PDF

Properties of AZO thin film prepared on polymer substrate (폴리머 기판 상에 제작한 AZO 박막의 특성)

  • Cho, Bum-Jin;Keum, Min-Jong;Kim, Kyung-Hwan
    • Proceedings of the KIEE Conference
    • /
    • 2006.07c
    • /
    • pp.1500-1501
    • /
    • 2006
  • Because AZO thin film has the potential applications, Preparing AZO thin films on the polymer substrate has been widely studied. In this study, we prepared AZO thin films on polyethersulfon (PES) at room temperature. The AZO thin films were prepared at $O_2$ gas flow rate of 0.05 and sputtering power of 100W with different film thickness by facing targets sputtering method. The electrical, optical and crystallographic properties of AZO thin films were measured by Hall effect measurement system, UV/VIS spectrometer, SEM and XRD. From the results, we obtained AZO thin films with a low resistivity, a transmittance of over 80% and c-axis preferred orientation.

  • PDF

A study on the properties of AZO(ZnO:Al) thin film with a variety of targets (타겟 종류에 따른 AZO(ZnO:Al) 박막 특성에 관한 연구)

  • Kim, Hyun-Woong;Keum, Min-Jong;Son, In-Hwan;Kim, Kyung-Hwan
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.05a
    • /
    • pp.98-101
    • /
    • 2004
  • AZO(ZnO:Al) thin film were prepared by FTS(Facing Target Sputtering) system. Change the sputtering conditions, AZO thin film deposited the lower resistivity(<$10-4{\Omega}cm$) so it can use to be a display application electrode. In this study, the electrical and crystallographic effects of target type have been investigated. The crystal structure was studied by XRD and the resistivity of AZO thin film was obtained by the four-point probe.

  • PDF