• Title/Summary/Keyword: AZO(Al:ZnO)

Search Result 214, Processing Time 0.027 seconds

Sputtered Al-Doped ZnO Layers for Cu2ZnSnS4 Thin Film Solar Cells

  • Lee, Kee Doo;Oh, Lee Seul;Seo, Se-Won;Kim, Dong Hwan;Kim, Jin Young
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.688-688
    • /
    • 2013
  • Al-doped ZnO (AZO) thin films have attracted a lot of attention as a cheap transparent conducting oxide (TCO) material that can replace the expensive Sn-doped In2O3. In particular, AZO thin films are widely used as a window layer of chalcogenide-based thin film solar cells such as Cu(In,Ga)Se2 and Cu2ZnSnS4 (CZTS). Mostly important requirements for the window layer material of the thin film solar cells are the high transparency and the low sheet resistance, because they influence the light absorption by the activelayer and the electron collection from the active layer, respectively. In this study, we prepared the AZO thin films by RF magnetron sputtering using a ZnO/Al2O3 (98:2wt%) ceramic target, and the effect of the sputtering condition such as the working pressure, RF power, and the working distance on the optical, electrical, and crystallographic properties of the AZO thin films was investigated. The AZO thin films with optimized properties were used as a window layer of CZTS thin film solar cells. The CZTS active layers were prepared by the electrochemical deposition and the subsequent sulfurization process, which is also one of the cost-effective synthetic approaches. In addition, the solar cell properties of the CZTS thin film solar cells, such as the photocurrent density-voltage (J-V) characteristics and the external quantum efficiency (EQE) were investigated.

  • PDF

Al-doping Effects on Structural and Optical Properties of Prism-like ZnO Nanorods

  • Kim, So-A-Ram;Kim, Min-Su;Cho, Min-Young;Nam, Gi-Woong;Lee, Dong-Yul;Kim, Jin-Soo;Kim, Jong-Su;Son, Jeong-Sik;Leem, Jae-Young
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.420-420
    • /
    • 2012
  • ZnO seed layer were deposited on quartz substrate by sol-gel method and prism-like Al-doped ZnO nanorods (AZO nanorods) were grown on ZnO seed layer by hydrothermal method with various Al concentration ranging from 0 to 2.0 at.%. Structural and optical properties of the AZO nanorods were investigated by field-emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD), photoluminescence (PL). The diameter of the AZO nanorods was smaller than undoped ZnO nanorods and its diameter of the AZO nanorods decreased with increasing Al concentration. In XRD spectrum, it was observed that stress and full width at half maximum (FWHM) of the AZO nanorods decreased and the 'c' lattice constant increased as the Al concentration increased. From undoped ZnO nanorods, it was observed that the green-red emission peak of deep-level emission (DLE) in PL spectra. However, after Al doping, not only a broad green emission peak but also a blue emission peak of DLE were observed.

  • PDF

Electrical and Optical Properties of ZnO : Al Films Prepared by the DC Magnetron Sputtering System (직류 Magnetron Sputter 법으로 제막된 ZnO : Al 박막의 전기광학 특성)

  • 김의수;유세웅;유병석;이정훈
    • Journal of the Korean Ceramic Society
    • /
    • v.32 no.7
    • /
    • pp.799-808
    • /
    • 1995
  • Transparent conductive films of aluminium doped zinc oxide (AZO) have been prepared by using the DC magnetron sputtering with the ZnO : Al (Al2O3 2 wt%) oxide target oriented to c-axis. Electrical and optical properties depended upon the O2/Ar gas ratio. The optical transmittance and sheet resistance of the AZO coated glass was 60~65% and 75Ω/$\square$, respectively at the O2/Ar gas ratio of 0. With the increase of the oxygen partial pressure to 2.0$\times$10-2, they were increased to the values of 81% and 1kΩ/$\square$, respectively. The films with the resistivities of 1.2~1.4$\times$10-3 Ω.cm, mobilities of 11~13 $\textrm{cm}^2$/V.sec and carrier concentrations of 3.5$\times$1020~4.0$\times$1020/㎤ were produced at the optimum O2/Ar gas ratio, which was 0.5$\times$10-2~1.0$\times$10-2. According to XRD analysis, the films have only one peak corresponding to the (002) plane, which indicates that there is a strong preferred orientation of the films. The grain size of ZnO films were calculated to 200~320 $\AA$, which was increased with the O2/Ar gas ratio and Ar gas flowrate.

  • PDF

Optical and Electrical Properties with Various Post-Heating Temperatures in the Al-Doped ZnO Thin Films by Sol-Gel Process (졸-겔법에 의해 제조된 Al-Doped ZnO 박막의 후열처리 온도에 따른 전기 및 광학적 특성)

  • Ko, Seok-Bae;Choi, Moon-Sun;Ko, Hyungduk;Lee, Chung-Sun;Tai, Weon-Pil;Suh, Su-Jeong;Kim, Young-Sung
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.10 s.269
    • /
    • pp.742-748
    • /
    • 2004
  • Isopropanol of low boiling point was used as a solvent to prepare Al-doped ZnO(AZO) thin films. A homogeneous and stable sol was made from Zn acetate a solute whose mole concentration was 0.7mol/$\iota$ and Al chloride as a dopant. Al-doped ZnO thin films were prepared by sol-gel method as a function of post-heating temperature from 500 to $700^{\circ}C$ and the optical and electrical properties were investigated. The c-axis orientation along (002) plane was enhanced with the increasing of post-heating temperature and the surface morphology of the films showed a homogeneous and nano-sized microstructure. The optical transmittance of the films post-heated below $650^{\circ}C$ was over $86\%$, but decreased at $700^{\circ}C$. The electrical resistivity of the thin films decreased from 73 to 22 $\Omega$-cm as the post-heating temperature increased up to $650^{\circ}C$, but increased greatly to 580 $\Omega$-cm at $700^{\circ}C$. XPS analysis indicated that the deterioration of electrical and optical properties was attributed to the precipitation of $Al_2O_3$ phase on the surface of AZO thin film. This result suggests that the optimum post-heating temperature to improve electrical and optical properties is $600^{\circ}C$.

Properties of AZO Thin Film deposited on the PES Substrate (PES 기판상에 증착된 AZO 박막의 특성)

  • Kim, Sang-Mo;Kim, Kyung-Hwan
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.12
    • /
    • pp.1072-1076
    • /
    • 2007
  • We prepared the Al doped ZnO (AZO) thin film on polyethersulfon (PES) without any substrate heating by Facing Targets Sputtering (FTS) system. FTS system has two different facing targets. One is ZnO doped the content of Al 2 wt% and the other is Zn in order to decrease resistivity. The electrical, structural and optical properties of AZO thin films were investigated. To evaluate the as-deposited thin film properties, we employed four-point probe (CMT-R100nw, Changmin), Surface profiler (Alpha-step, Tencor), UV/VIS spectrometer (HP), X-ray diffractometer (XRD, Rigaku) and Field Emission Scanning Electron Microscopy (FESEM, Hitachi S-4700). As a result, We obtained that AZO thin film deposited on PES substrate at a DC Power of 150 W, working pressure of 1 mTorr and $O_2$ gas flow ratio of 0.2 exhibited the resistivity of $4.2{\times}10^{-4}\;[{\Omega}cm]$ and the optical transmittance of about 85 % in the visible range.

Effect of Plasma Enhancement on the Al-doped ZnO Thin Film Synthesis by MOCVD (유기금속화학기상증착법에 의한 ZnO:Al 필름 합성에서 플라즈마 인가 효과)

  • Seomoon, Kyu
    • Journal of the Korean Solar Energy Society
    • /
    • v.39 no.1
    • /
    • pp.33-40
    • /
    • 2019
  • Al-doped ZnO (AZO) thin films were synthesized on Si(100) wafers via plasma enhanced metal organic chemical vapor deposition (PE-MOCVD) method using diethyl zinc (DEZ) and N-methylpyrrolidine alane (MPA) as precursors. Effects of Al/Zn mixing ratio, plasma power on the surface morphology, crystal structure, and electrical property were investigated with SEM, XRD and 4-point probe measurement respectively. Growth rate of the film decreased slightly with increasing the Al/Zn mixing ratio, however electrical property was enhanced and resistivity of the film decreased greatly about 2 orders from $9.5{\times}10^{-1}$ to $8.0{\times}10^{-3}{\Omega}cm$ when the Al/Zn mixing ratio varied from 0 to 9 mol%. XRD analysis showed that the grain size increased with increasing the Al/Zn mixing ratio. Growth rate and electrical property were enhanced in a mild plasma condition. Resistivity of AZO film decreased down to $7.0{\times}10^{-4}{\Omega}cm$ at an indirect plasma of 100 W condition which was enough value to use for the transparent conducting oxide (TCO) material.

The properties of Al-doped ZnO films deposited with RF magnetron sputtering system in various H2/(Ar + H2) gas ratios (RF 마그네트론 스퍼터링 방법을 사용해 증착된 Al이 도핑 된 ZnO 박막의 H2/(Ar + H2) 가스 비율에 따른 특성)

  • Kim, Jwa-Yeon;Han, Jung-Su
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.22 no.3
    • /
    • pp.122-126
    • /
    • 2012
  • The properties of Al-doped ZnO (AZO) films were investigated as a function of $H_2/(Ar+H_2)$ gas ratio using an AZO (2 wt% $Al_2O_3$) ceramic target in a radio frequency (RF) magnetron sputtering system. The deposition process was done at $200^{\circ}C$ and in $2{\times}10^{-2}$ Torr working pressure and with various ratios of $H_2/(Ar+H_2)$ gas. During the AZO film deposition process, partial $H_2$ gas affected the AZO film characteristics. The electron resistivity (${\sim}9.21{\times}10^{-4}\;{\Omega}cm$) was lowest and mobility (${\sim}17.8\;cm^2/Vs$) was highest in AZO films when the $H_2/(Ar+H_2)$ gas ratio was 2.5 %. When the $H_2/(Ar+H_2)$ gas ratio was increased above 2.5 %, the electron resistivity increased and mobility decreased with increasing $H_2/(Ar+H_2)$ gas ratio in AZO films. The carrier concentration increased with increasing $H_2/(Ar+H_2)$ gas ratio from 0 % to 7.5 %. This phenomenon was explained by reaction of hydrogen and oxygen and additional formation of oxygen vacancy. The average optical transmission in the visible light wavelength region over 90 % and an orientation of the deposition was [002] orientation for AZO films grown with all $H_2/(Ar+H_2)$ gas ratios.

Characterization of AI-doped ZnO Films Deposited by DC Magnetron Sputtering (DC 마그네트론 스퍼터링에 의해 증착한 AZO 박막의 특성)

  • Park, Yi-Seop;Lee, Seung-Ho;Song, Pung-Keun
    • Journal of Surface Science and Engineering
    • /
    • v.40 no.3
    • /
    • pp.107-112
    • /
    • 2007
  • Aluminum doped zinc oxide (AZO) films were deposited on non-alkali glass substrate by DC magnetron sputtering with 3 types of AZO targets (doped with 1.0 wt%, 2.0 wt%, 3.0 wt% $Al_2O_3$). Electrical, optical properties and microstructure of AZO films have been investigated by Hall effect measurements, UV/VIS/NIR spectrophotometer, and XRD, respectively. Crystallinity of AZO films increased with increasing substrate temperature ($T_s$) and doping ratio of Al. Resistivity and optical transmittance in visible light were $8.8{\times}10^{-4}{\Omega}cm$ and above 85%, respectively, for the AZO film deposited using AZO target (doped with 3.0 wt% $Al_2O_3$) at $T_s$ of $300^{\circ}C$. On the other hand, transmittance of AZO films in near-infrared region decreased with increasing $T_s$ and doping ratio of Al, which could be attributed to the increase of carrier density.

The Comparisons of Electrical and Optical Properties on Transprant Conducting Oxide for Silicon Heterojunction Solar Cells (실리콘 이종접합 태양전지용 투명 전도 산화막의 전기적, 광학적 특성비교)

  • Choi, Suyoung;Lee, Seunghun;Tark, Sung Ju;Parkm, Sungeun;Kim, Won Mok;Kim, Donghwan
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.57.2-57.2
    • /
    • 2010
  • 투명전도 산화막(Transparent conducing oxide: TCO)은 태양 전지, 터치패널, 가스 센서 등 여러 분야에 적용할 수 있는 물질로서 전기 전도성과 광 투과성을 동시에 가진다. 높은 전기 전도성과 광 투과성을 가지는 Sb:$In_2O_3$(ITO)는 투명전도 산화막 재료로써 가장 일반적으로 사용되고 있으나 인듐의 매장량 한계로 인해 가격이 높다는 단점이 있다. 본 연구에서는 ITO 대체 TCO 물질인 Al doped ZnO(AZO)를 rf magnetron sputter를 이용하여 최적의 수소 도핑량을 찾아 ITO의 전기적 광학적 성질과 비교하였다. AZO 박막은(ZnO:Al2O3 2wt.%)타겟을 이용하여 heater 온도 250도에서 슬라이드 글래스 및 코닝 글래스에 증착시켰고 비교군인 ITO박막은 (In2O3:$SnO_2$ 10wt.%)타겟을 이용하여 수소 도핑 없이 350도로 증착시켰다. AZO 및 ITO 박막의 전기적 특성은 hall measurement를 이용하여 측정하였고, UV-VIS spectrophotometer로 광학적 특성을 측정하였다. 수소 도핑량이 증가함에 따라 AZO 박막의 캐리어 농도가 증가하여 전기적 특성이 향상되었고, 가시광 영역에서 높은 평균 투과도를 유지 하였다. AZO 박막과 ITO 박막의 전기적 및 광학적 특성을 비교한 결과, 최적 수소 도핑량을 가진 AZO 박막은 ITO 박막에 준하는 특성을 보였다.

  • PDF

The Effect of Different Substrate Temperature on the Electrical Properties of Al-doped ZnO Thin Films (Al-doped ZnO 박막의 기판 온도에 따른 전기적, 광학적 특성)

  • Kim, Bong-Seok;Kim, Eung-Kwon;Lee, Kyu-Il;Oh, Su-Young;Song, Joon-Tae
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.10
    • /
    • pp.1782-1785
    • /
    • 2007
  • In this paper, the effect of substrate temperature on structural, electrical and optical properties of aluminium-doped zinc oxide (AZO) films were investigated. AZO thin films were prepared on glass substrate by pulsed DC magnetron sputtering technique. The properties of AZO were measured by using XRD, AFM, UV spectrophotometer, and hall effect measurement system. The resistivity of AZO films was improved under the condition of high substrate temperature. The resistivity decreased from $9.95{\times}10^{-2}\;{\Omega}-cm\;to\;1.1{\times}10^{-3}\;{\Omega}-cm$ as a result of high substrate temperature and the average transmittances in visible range were above 80%.