• Title/Summary/Keyword: AVERAGE PARTICLE SIZE

Search Result 1,030, Processing Time 0.032 seconds

Preparation and Properties of Water-based Adhesive Using Gemini Type Nonionic Reactive Surfactants (제미니형 비이온 반응성 계면활성제를 이용한 수성접착제의 제조 및 특성)

  • Shin, Hye-Lin;Jeong, Noh-Hee
    • Applied Chemistry for Engineering
    • /
    • v.30 no.5
    • /
    • pp.597-605
    • /
    • 2019
  • In order to improve the adhesion of water-based adhesive, gemini type nonionic reactive surfactants were synthesized and applied to water-based adhesives. The surfactants were synthesized by using maleic acid and polyoxyethylene cetyl ether having different length of ethylene oxide and confirmed by FT-IR and $^1H-NMR$. Their appearance was light yellow wax. The cloud point of the compound was more than $78^{\circ}C$. The measured critical micelle concentration (c.m.c) was $1.0{\times}10^{-4}{\sim}7.0{\times}10^{-4}mol/L$ and surface tension at c.m.c was 25.9~32.0 mN/m. As the number of ethylene oxide increased, the emulsifying power was improved. The foaming height of each compound by Ross-Miles method was 1.4~4.5 cm. The synthesized surfactants was then used as an emulsifier in emulsion polymerization of water-based adhesives and its physical properties were evaluated. The solid contents of prepared adhesives was 59%. The average particle size and initial tackiness of the prepared adhesives were 164~297 nm and ball no. of 20~32, respectively. The peel strength was $1.8{\sim}2.1kg_f/mm$. The retention rate of adhesives viscosity was evaluated to 99% during 30 days. Therefore, synthesized gemini type nonionic reactive surfactants are expected to be applied as an emulsifier for the high adhesive force.

Anthracite Oxygen Combustion Simulation in 0.1MWth Circulating Fluidized Bed (0.1 MWth 급 순환유동층에서의 무연탄 연소 전산유체역학 모사)

  • Go, Eun Sol;Kook, Jin Woo;Seo, Kwang Won;Seo, Su Been;Kim, Hyung Woo;Kang, Seo Yeong;Lee, See Hoon
    • Korean Chemical Engineering Research
    • /
    • v.59 no.3
    • /
    • pp.417-428
    • /
    • 2021
  • The combustion characteristics of anthracite, which follow a complex process with low reactivity, must be considered through the dynamic behavior of circulating fluidized bed (CFB) boilers. In this study, computational fluid dynamics (CFD) simulation was performed to analyze the combustion characteristics of anthracite in a pilot scale 0.1 MWth Oxy-fuel circulating fluidized bed (Oxy-CFB) boiler. The 0.1MWth Oxy-CFB boiler is composed of combustor (0.15 m l.D., 10 m High), cyclone, return leg, and so on. To perform CFD analysis, a 3D simulation model reactor was designed and used. The anthracite used in the experiment has an average particle size of 1,070 ㎛ and a density of 2,326 kg/m3. The flow pattern of gas-solids inside the reactor according to the change of combustion environment from air combustion to oxygen combustion was investigated. At this time, it was found that the temperature distribution in air combustion and oxygen combustion showed a similar pattern, but the pressure distribution was lower in oxygen combustion. addition, since it has a higher CO2 concentration in oxygen combustion than in air combustion, it can be expected that carbon dioxide capture will take place actively. As a result, it was confirmed that this study can contribute to the optimized design and operation of a circulating fluidized bed reactor using anthracite.

Nickel Catalysts Supported on Ash-Free Coal for Steam Reforming of Toluene (무회분탄에 분산된 니켈 촉매의 톨루엔 수증기 개질)

  • PRISCILLA, LIA;KIM, SOOHYUN;YOO, JIHO;CHOI, HOKYUNG;RHIM, YOUNGJOON;LIM, JEONGHWAN;KIM, SANGDO;CHUN, DONGHYUK;LEE, SIHYUN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.29 no.6
    • /
    • pp.559-569
    • /
    • 2018
  • Catalytic supports made of carbon have many advantages, such as high coking resistance, tailorable pore and surface structures, and ease of recycling of waste catalysts. Moreover, they do not require pre-reduction. In this study, ash-free coal (AFC) was obtained by the thermal extraction of carbonaceous components from raw coal and its performance as a carbon catalytic support was compared with that of well-known activated carbon (AC). Nickel was dispersed on the carbon supports and the resulting catalysts were applied to the steam reforming of toluene (SRT), a model compound of biomass tar. Interestingly, nickel catalysts dispersed on AFC, which has a very small surface area (${\sim}0.13m^2/g$), showed higher activity than those dispersed on AC, which has a large surface area ($1,173A/cm^2$). X-ray diffraction (XRD) analysis showed that the particle size of nickel deposited on AFC was smaller than that deposited on AC, with the average values on AFC ${\approx}11nm$ and on AC ${\approx}23nm$. This proved that heteroatomic functional groups in AFC, such as carboxyls, can provide ion-exchange or adsorption sites for the nano-scale dispersion of nickel. In addition, the pore structure, surface morphology, chemical composition, and chemical state of the prepared catalysts were analyzed using Brunauer-Emmett-Taylor (BET) analysis, transmission electron microscopy (TEM), scanning electron microscopy (SEM), x-ray diffraction (XRD), Fourier-transform infrared (FT-IR) spectroscopy, and temperature-programmed reduction (TPR).

Evaluation of Field Application and Estimation of Bedload Discharge in the Forest Watershed using the Hydrophone (하이드로폰을 이용한 산림유역 소류사 유출량 산정 및 현장 적용성 검토)

  • Seo, Jun-Pyo;Kim, Ki-Dae;Woo, Choong-Shik;Lee, Chang-Woo;Lee, Heon-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.12
    • /
    • pp.807-818
    • /
    • 2020
  • In this study, hydrophones using acoustic sensors were used to estimate the amount of bedload discharge in a forested watershed. The reaction characteristics were analyzed through hydrophone flume tests and field tests, and the quantitative bedload discharge was calculated and compared with that measured by a pit sampler. The hydrophone reaction changed the pulse according to the flow rate change, but did not react to standard sand. The pulse was different depending on the particle size and weight, and accordingly, there was a specific channel showing a suitable response. For a hydrophone installed in the field, by using an automatic impact device, the reaction characteristics of each channel were analyzed to confirm normal operation of the sensor and the suitability of the output value of each channel. In addition, a suitable channel was selected for the estimation of bedload discharge. The bedload discharge formula was developed using a hydrophone pulse and the average flow rate, and was compared with the measured data in the pit sampler in the study site. As a result of the study, if a hydrophone is used for monitoring the bedload in forested watersheds, it is considered effective in quantitatively estimating the weight of bedload discharge.

Numerical Analysis for the Development of a Blower to Extend the Life of the Impeller and Reduce Power Costs by Changing the Air Flow (공기흐름 변경으로 임펠러의 수명연장과 전력비 절감을 위한 송풍기 개발을 위한 수치해석)

  • Kim, Il-Gyoum;Park, Woo-Cheul;Sohn, Sang-Suk;Kim, Young-Nam
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.12
    • /
    • pp.192-199
    • /
    • 2020
  • The blower erosion phenomenon was investigated to develop a long-life blower with a volume flow rate of 10,000 ㎥/min with the required total pressure efficiency of 83% or more. The blower performance and blower erosion were predicted through numerical analysis by computational fluid dynamics(CFD). The conditions used for numerical analysis were an air volume of 16,200 ㎥/min, a rotation speed of 893 rpm, and a temperature of 330℃. The specific gravity, particle size, and amount of the dust was 3.15, 90 ㎛~212 ㎛, and is 265 kg/min, respectively. To examine the effects of a dust deflector on erosion, erosion analysis was performed by comparing the models with and without a dust deflector. Numerical analysis showed that when the dust deflector is installed, the average tended to decrease by 167% in the impeller and 133% in the boss. CFD using the Finne's model for erosion revealed a parallel restitution coefficient of 1 and a perpendicular restitution coefficient of 0.1. The blower performance of case 5 was 691.7 mmAq, and the efficiency was 83.3% when the rotation speed and the air volume flow rate were 880 rpm and 16,200 ㎥/min, respectively.

Study on Stabilization of Retinaldehyde using Drug-in-Cyclodextrinin-Liposome (DCL) for Skin Wrinkle Improvement (레틴알 안정화를 위한 사이클로덱스트린-리포좀에 관한 연구)

  • Ha, Ji Hoon;Choi, Hyeong;Hong, In Ki;Han, Sang-Kuen;Bin, Bum Ho
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.48 no.1
    • /
    • pp.77-85
    • /
    • 2022
  • Retinaldehyde (RA), vitamin A derivative, is an intermediate between retinol and retinoic acid and has an excellent wrinkle improving effect. In this study, Drug-in-cyclodextrin-in-liposome (DCL) was used to enhance the stability and skin penetration of RA. The complex of RA and hydroxypropyl-beta-cyclodextrin (HP-β-CD) was prepared by the freeze-drying method, and the presence or absence of inclusion of retinal was confirmed by UV-Vis spectrometer, FT-IR and SEM images. RA was captured in HP-β-CD about 95.6% on 1 : 15 (w/w). The retinal-HP-β-CD complex was encapsulated in liposomes using a homomixer and microfluidizer, with an average particle size of 215 ± 4.2 nm and a zeta potential of -31.2 ± 0.5 mv. In the evaluation of the degradation stability of RA, degradation rate of RA-HP-β-CD-liposomes in water was 1.8% higher than RA-liposome (5.8%), RA-HP-β-CD complex (9.7%) and RA alone (37.6%). RA cream (0.05% RA) including RA-HP-β-CD-liposomes was prepared for clinical test with wrinkle-improving efficacy and skin dermis denseness evaluated for 2 or 4 weeks. RA cream showed a significant wrinkle improving effect without skin irritation. In conclusion, it was confirmed that the double stabilization technology using the DCL system contribu tes to the effect of improving skin wrinkles by increasing the stabilization of retinal.

Influence of Rainfall Intensity and Saturated Permeability on Slope Stability during Rainfall Infiltration (강우침투시 강우강도와 포화투수계수가 안전율에 미치는 영향)

  • Lee, Seung-Rae;Oh, Tae-Kyu;Kim, Yun-Ki;Kim, Hee-Chul
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.1
    • /
    • pp.65-76
    • /
    • 2009
  • The unsaturated characteristics of Korean weathered granite soils have been studied to investigate the influence of saturated permeability, rainfall intensity and soil-water characteristic curve (SWCC) on the slope stability. The upper, average and lower SWCCs were estimated from the publication and experimental results using the statistical concept. The roughly estimated SWCC can be used for the soils without experimental results by relating SWCC with the particle size distribution curve. An appropriate ratio between the saturated permeability and the rainfall intensity ($k_s$/i) was also suggested for practical use in designing the slopes by investigating the time-dependent variation of slope instability during the rainfall. The slope stability was deteriorated from the initiation of rainfall and recovered again after the factor of safety reached the critical value. The FS of the slope decreased at first and then increased after reaching the critical value during the rainfall. As a result, the slope instability was not related with an absolute rainfall intensity but with the ratio between the saturated permeability and the rainfall intensity. In case of the upper SWCC, the critical condition occurred when the ratio between the saturated permeability and the rainfall intensity was in the range of $1.0{\sim}2.0$.

Changes in Macrobenthic Community Depending on the Anthropogenic Impact and Biological Factors of Boryeong Tidal Flat, Korea (보령 갯벌의 인위적 영향 및 생물학적 요인에 따른 대형저서동물 군집 변화)

  • SEUNG RYUL JEON;GIHO ONG;JIHO LEE;YUNA JEONG;JUN-HO KOO;KWANG-SEOK O;JONG-WOO PARK
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.28 no.4
    • /
    • pp.143-157
    • /
    • 2023
  • This study confirmed the characteristics of macrobenthic community due to anthropogenic environmental changes in the Boryeong Jugyo tidal flat, where the habitat of manila clam (Ruditapes philippinarum) and mud shrimp (Upogebia major) is separated. The total number of occurring species was 55 during the study period with an average habitat density of 338 ind./m2 and a biomass of 212.2 gWWt/m2. The number of occuring species increased from 27 species at the upper flat to 37 species at the lower flat, and the dominant species differed by tide levels (Upper: Leonnates persica, Middle: Heteromastus filiformis, Lower: R. philippinarum). The macro-benthic community sturctures of the top 10 species using cluster analysis and nMDS were divided into two groups, focusing on Manila clam culture farm of lower flats and middle flats with high habitat density, reflecting the influence of specific species. The sediment composition of the U. major habitat space fluctuated highly, but it was maintained annually, and the sorting coefficient was 2.1 𝜑, and the proportion of the same particle size was increased. In particular, because the middle flat has a dense anthropogenic impact, a dominant species, H. filiformis dominated and revealed a relationship with the density of burrow holes of U. major, which is considered to be a biological interaction between these two macrofauna in this tidal flat.

Testing the Potential of Sewage Sludge Gasification Solid Residues as a Circulating Resource by Physical Separation (하수슬러지의 가스화 고형 잔재물의 순환자원으로서 물리적 선별에 의한 잠재성 검토)

  • Donghyun Kim;Sunghyun Bae;Seongmin Kim;Seongsoo Han;Yosep Han;Gi Woon Kwon
    • Resources Recycling
    • /
    • v.33 no.3
    • /
    • pp.48-56
    • /
    • 2024
  • In this study, physical property evaluation and physical separation of the target product were performed to investigate the possibility of using sewage sludge gasification solid residue (GSRs) as a circulating resource. Firstly, the GSRs used in this study was supplied by Sudokwon Landfill Management Corporation, and generally the GSRs was in the form of porous pellets with a particle size of several millimetres. In addition, the partially black areas were confirmed to be unburned and ungasified carbon, and the average carbon content was 5%. In addition, the content of silica, alumina and phosphorus oxide was more than 70% of the total content. It was confirmed that the metallic components of the wet grinding product were separated into individual elements. As a physical separation of metallic and non-metallic components was required, it was finally found that flotation screening was suitable. Accordingly, cationic and anionic surfactants were selected to separate metallic components in which a relatively large amount of non-metallic components were concentrated, and the separation characteristics were confirmed. As a result, it is expected that the concentration of non-metallic components such as silica, alumina and phosphorus will be easier than the separation of metallic components. Therefore, since it is possible to physically treat the gasified sludge residue, it is judged to have potential as a circular resource according to the proposed recycling method for the separated product.

The Morphologic Characteristics of Step-pool Structures in a Steep Mountain Stream, Chuncheon, Gangwon-do (강원도 춘천시 근교의 산지계류에 형성된 계단상 하상구조의 특징)

  • Kim, Suk Woo;Chun, Kun Woo;Park, Chong Min;Nam, Soo Youn;Lim, Young Hyup;Kim, Young Seol
    • Journal of Korean Society of Forest Science
    • /
    • v.100 no.2
    • /
    • pp.202-211
    • /
    • 2011
  • The geometric characteristics of step-pool structures and how they are influenced by channel characteristics were investigated in a steep mountain stream in the Experimental Forests of Kangwon National University in Chuncheon, Gangwon-do. Average values of steps for the study reaches were as follows: step spacing, 4.69 m; step height, 0.47 m; step drop, 0.71 m; step-forming particle sizes, 0.68 m; number, 21steps/ 100 m; the ratio of step spacing to channel width, 0.5; and step steepness, 0.13. Relationships between spacing and height of steps and channel gradient showed a negative- and positive correlation, respectively, whereas all geometric variables of steps manifested poor correlation with channel width. Therefore, step steepness, expressed as the ratio of step height to step spacing, increased as channel gradient increased. The ratio of step steepness to channel gradient representing the criterion of maximum flow resistance was 1.2, indicating the channel bed's stable condition. In particular, the relationship between the ratio of step drop to step height and channel gradient showed a significant negative correlation, suggesting the influence of step-pool geometry in trapping sediment and providing an aquatic habitat. Positive correlations also exist between spacing and drop of steps and step particles. Our findings suggest that the dynamics of step-pool structures may strongly control physical and ecological environments in steep mountain streams, so understanding them is essential for stream management.