DOI QR코드

DOI QR Code

Testing the Potential of Sewage Sludge Gasification Solid Residues as a Circulating Resource by Physical Separation

하수슬러지의 가스화 고형 잔재물의 순환자원으로서 물리적 선별에 의한 잠재성 검토

  • Donghyun Kim (Resources Utilization Division, Korea Institute of Geoscience and Mineral Resources (KIGAM)) ;
  • Sunghyun Bae (Resources Utilization Division, Korea Institute of Geoscience and Mineral Resources (KIGAM)) ;
  • Seongmin Kim (Resources Utilization Division, Korea Institute of Geoscience and Mineral Resources (KIGAM)) ;
  • Seongsoo Han (Resources Utilization Division, Korea Institute of Geoscience and Mineral Resources (KIGAM)) ;
  • Yosep Han (Resources Utilization Division, Korea Institute of Geoscience and Mineral Resources (KIGAM)) ;
  • Gi Woon Kwon (Resource Recirculation Technology Research Center, Sudokwon Landfill Site Management Corporation (SLC))
  • 김동현 (한국지질자원연구원 자원활용연구본부 자원회수연구센터) ;
  • 배성현 (한국지질자원연구원 자원활용연구본부 자원회수연구센터) ;
  • 김성민 (한국지질자원연구원 자원활용연구본부 자원회수연구센터) ;
  • 한성수 (한국지질자원연구원 자원활용연구본부 자원회수연구센터) ;
  • 한요셉 (한국지질자원연구원 자원활용연구본부 자원회수연구센터) ;
  • 권기운 (수도권매립지관리공사 자원순환기술연구소)
  • Received : 2024.05.27
  • Accepted : 2024.06.17
  • Published : 2024.06.30

Abstract

In this study, physical property evaluation and physical separation of the target product were performed to investigate the possibility of using sewage sludge gasification solid residue (GSRs) as a circulating resource. Firstly, the GSRs used in this study was supplied by Sudokwon Landfill Management Corporation, and generally the GSRs was in the form of porous pellets with a particle size of several millimetres. In addition, the partially black areas were confirmed to be unburned and ungasified carbon, and the average carbon content was 5%. In addition, the content of silica, alumina and phosphorus oxide was more than 70% of the total content. It was confirmed that the metallic components of the wet grinding product were separated into individual elements. As a physical separation of metallic and non-metallic components was required, it was finally found that flotation screening was suitable. Accordingly, cationic and anionic surfactants were selected to separate metallic components in which a relatively large amount of non-metallic components were concentrated, and the separation characteristics were confirmed. As a result, it is expected that the concentration of non-metallic components such as silica, alumina and phosphorus will be easier than the separation of metallic components. Therefore, since it is possible to physically treat the gasified sludge residue, it is judged to have potential as a circular resource according to the proposed recycling method for the separated product.

본 연구에서는 하수슬러지 가스화 고형 잔류물(GSRs)의 순환자원 활용 가능성을 검토하기 위해 대상제품에 대한 물성평가 및 물리적 분리를 수행하였다. 먼저, 본 연구에 사용된 GSRs는 수도권매립지관리공사를 통해 공급되었으며, 일반적으로 GSRs는 수 mm 입자크기의 다공성 펠릿 형태이었다. 또한, 부분적으로 검은 부분은 미연소 및 가스화되지 않은 탄소로 확인되었으며, 평균 탄소 함량은 5%였다. 또한 실리카, 알루미나, 산화인의 성분이 전체 함량의 70% 이상이었다. 습식분쇄 생성물은 금속성분이 단체분리되어있음 확인하였다. 금속성분과 비금속성분의 물리적 분리가 필요하여 최종적으로 부유선별에 적합한 것으로 결정하였다. 이에, 상대적으로 많은 양의 비금속성분이 농축된 금속 성분을 분리하기 위해 양이온 및 음이온 계면활성제를 선택하여 분리 특성을 확인하고자 하였다. 결과적으로, 금속성분 분리보다 실리카, 알루미나, 인 등 비금속 성분의 농축이 더 용이할 것으로 기대된다. 따라서, 가스화 처리된 하수슬러지 잔재물의 물리적 처리에 가능함에 따라 분리산물에 대한 재활용 방안 제안에 따라 순환자원으로서 잠재성이 있을 것으로 판단된다.

Keywords

Acknowledgement

본 연구는 한국지질자원연구원 주요사업인 '국내 부존바나듐(V) 광물자원 선광/제련/활용기술 개발(GP2020-013, 24-3212)' 과제의 일환으로 수행되었다.

References

  1. Zhang, Q., Hu, J., Lee, D.-J., et al., 2017 : Sludge treatment: current research trends. Bioresource Technology, pp.1159-1172.
  2. Gao, N., Kamran, K., Quan, C., et al., 2020 : Thermochemical conversion of sewage sludge: A critical review, Progress in Energy and Combustion Science, 79, 100843.
  3. Raheem, A., Sikarwar, V. S., He, J., et al., 2018 : Opportunities and challenges in sustainable treatment and resource reuse of sewage sludge: A review, Chemical Engineering Journal, 337, pp.616-641.
  4. Zhang, X.-P., Zhang, C., Li, X., et al., 2018 : A two-step process for sewage sludge treatment: hydrothermal treatment of sludge and catalytic hydrothermal gasification of its derived liquid, Fuel Processing Technology, 180, pp.67-74.
  5. Collard, M., Teychene, B., Lemee, L., 2017 : Comparison of three different wastewater sludge and their respective drying processes: solar, thermal and reed beds-Impact on organic matter characteristics, Journal of Environmental Management, 203, pp.760-767.
  6. Liu, X., Chang, F., Wang, C., et al., 2018 : Pyrolysis and subsequent direct combustion of pyrolytic gases for sewage sludge treatment in China, Applied Thermal Engineering, 128, pp.464-470.
  7. Gao, N., Li, Z., Quan, C., et al., 2019 : A new method combining hydrothermal carbonization and mechanical compression in-situ for sewage sludge dewatering: bench-scale verification, Journal of Analytical and Applied Pyrolysis, 139, pp.187-195.
  8. Han, Y., Kim, S., Han, S., et al., 2023 : The optimal physical treatment process for roduction of high-grade iron concentrate from Waelz Kiln slag, Resources Recycling, 32(2), pp.3-11.
  9. Moon, J. Y., Oh, S. H., Park, Y., et al., 2020 : Increasing Global Climate Ambition and Implications for Korea, KIEP Research Paper, pp.20-21.
  10. Han, Y., Kim, S., Jung, M., et al., 2022 : Crystal Structure Behavior of Vanadium-Titanium Magnetite (VTM) Ore by Planetary Ball Mill, Resources Recycling, 31(2), pp. 63-69.
  11. Han, Y., Han, S., Kim, B., et al., 2019 : Flotation separation of quartz from apatite and surface forces in bubble-particle interactions: Role of pH and cationic amine collector contents, Journal of Industrial and Engineering Chemistry, 70, pp.107-115.
  12. Kim, S., Baek, S.-H., Han, Y., et al., 2020 : Laboratory testing of Scheelite flotation from raw ore in Sangdong mine for process development, Minerals, 10(11), p.971
  13. Han, Y., Kim, S., Go, B., et al., 2021 : Optimized magnetic separation for efficient recovery of V and Ti enriched concentrates from vanadium-titanium magnetite ore: Effect of grinding and magnetic intensity, Powder Technoloy, 391, pp.282-291.
  14. Han, Y., Han, S., Kim, S., et al., 2021 : Mesoporous silica derived from municipal solid waste incinerator (MSWI) ash slag: synthesis, characterization and use as supports for Au (III) recovery, Materials, 14(22), p.6894.