• Title/Summary/Keyword: ATmega8

Search Result 50, Processing Time 0.04 seconds

ATmega128를 이용한 LED 조명 제어보드 구성

  • Jang, Young-Ho;Kim, Hwan-Yong
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2011.10a
    • /
    • pp.440-443
    • /
    • 2011
  • This paper aims to compose a new LED lighting control board in the LED lighting environment This LED lighting control board is designed to adjust the brightness of LED lighting depending on the change of surrounding brightness, and it is also designed to control the brightness by using ATmega128, which is an 8bit micro-controller, The PWM wave form likely to output into the LED driver is determined by the ADC value input through ADC.

  • PDF

Remote control stopwatch development using ATmega8 processor (ATmega8 프로세서를 이용한 원격제어 초시계 개발)

  • Choi, Chul-Jae;Kim, Do-Moon;Lee, Tae-Hee
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.9 no.9
    • /
    • pp.1043-1049
    • /
    • 2014
  • In this paper, we design and implement a digital LCD stopwatch function of the remote control. The central controller and LCD stopwatch is implemented based on the clock signal of the crystal oscillator of 8MHz by using ATmega8 processor in the AVR representative series of ATMEL, Communication module basic, ZBS-using the ISM 2.4GHz frequency band at 100. Stopwatch of remote control that has been proposed, it is possible to solve the three problems. First, it is possible to solve the sight deviation between broadcast camera and panelists glance to large LCD stopwatch monitors. Second, it is possible to avoid the trouble of broadcasting cameras cross replacement, Third, it is possible to minimize the inconvenient of the viewer corresponding to the operation of the horizontal movement of the broadcast camera.

Atmega128A RTOS PORTING (Atmega128A RTOS 이식)

  • Kim, Ki-Su
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2017.07a
    • /
    • pp.265-268
    • /
    • 2017
  • 인더스트리 4.0 시대의 도래로 첨단의 자동화 시스템을 구축하기 위해서는 각 장비들의 정보를 수집, 분석, 가공, 저장 등의 작업을 수행하여야 하며 각 장비들은 시분할 방식으로 모든 정보를 균일하게 수집, 분석, 저장하여 균등하게 처리하여 시스템의 자원을 잘 활용하여야 한다. 시분할 시스템은 인더스트리 4.0의 시대의 핵심 기술이라 할 수 있다 본 연구에서 8bit 버스를 가진 MCU Atmega128A에 RTOS를 포팅 하여 시분할 시스템이 동작 되는 것을 확인하였다.

  • PDF

Optimized Binary Field Reduction Algorithm on 8-bit ATmega128 Processor (8-bit ATmega128 프로세서 환경에 최적화된 이진체 감산 알고리즘)

  • Park, Dong-Won;Kwon, Heetaek;Hong, Seokhie
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.25 no.2
    • /
    • pp.241-251
    • /
    • 2015
  • In public-key cryptographic system based on finite field arithmetic, it is very important to challenge for implementing high speed operation. In this paper, we focused on 8-bit ATmega128 processor and concentrated on enhancing efficiency of reduction operation which uses irreducible polynomial $f(x)=x^{271}+x^{207}+x^{175}+x^{111}+1$ and $f(x)=x^{193}+x^{145}+x^{129}+x^{113}+1$. We propose optimized reduction algorithms which are designed to reduce repeated memory accesses by calculating final reduced values of Fast reduction. There are 53%, 55% improvement when proposed algorithm is implemented using assembly language, compare to previous Fast reduction algorithm.

Development of the Educational Robot System Considering for Extension and Load Reduction (확장성과 부하 경감을 고려한 교육용 로봇 시스템 개발)

  • Lee, Seung-Heui;Choi, Deuk-Sung
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.2
    • /
    • pp.214-219
    • /
    • 2014
  • In this paper, a new robot system is designed and manufactured to improve the educational robot. The main processor is realized using the ARM Cortex-M3 and the co-processor is implemented by AVR ATMega2560 to deal with data coming from sensor modules. The processor of sensor modules was developed by the AVR ATMega8. The communication system is composed with IIC communication to alleviate the load of main processor. We have developed the educational robot system adopting the hub module for extension characteristics.

Implementation of a drone using the PID control of an 8-bit microcontroller (8bit 마이크로컨트롤러의 PID제어를 이용한 드론 구현)

  • Lee, Donghee;Moon, Sangook
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.6 no.9
    • /
    • pp.81-90
    • /
    • 2016
  • Recently drones have become popular enough to be one of the hobby. The drone refers to an unmanned aerial vehicle which can fly and be steered by a radio wave without a pilot and it has a airplane or helicopter shape. The drone was first started to be used from military purpose, but its usage has been expanded to the private such as construction site, crop-dusting, field discovery, freight shipping and drones to prevent cheating. However the drone that we can see often in the market is expansive, hard to be repaired when it broken down and has a discomfort of the short flight time. In this paper, to solve an uncomfortable talk on the cheap 8-bits microcontrollers ATmega128 Using drone for implementation. Axes gyroscope and accelerometers mcu between posture an attitude control, communications through drone control, pid. Receiver input them into transmitter signals of movements to control drone c the programming was implemented in on the basis of language. drone using ATmega128 microcontroller is possible hovering, By utilizing a pin that are not required for control it can be used as a drone for a variety of uses.

A Study on the Standardization of IO Pins and Peripheral Modulesfor the General Microcontroller Training System (범용 마이크로콘트롤러 실습장비를 위한 입출력 핀배열 및 주변장치 모듈의 표준화에 관한 연구)

  • Lee, Hee-Yeong;Kim, Jai-Young
    • Journal of the Korea Computer Industry Society
    • /
    • v.8 no.4
    • /
    • pp.221-228
    • /
    • 2007
  • Many kinds of microcontrollers such as 8051, PIC16 and Atmega series are used for the automatic control system, home appliances and communication equipments manufacturing. It is very important to understand the basic operational principles of microcontrollers and their design concepts. There are many kinds of educational microcontroller trainers and also they are designed and assembled very complicatedly. For the students or developers, it is very difficult to catch the basic operation schemes and apply the techniques to the control system. And also it requires much cost and time for the various kinds of trainers purchasing. In this paper, standardization of pins layout and peripheral modules for the general microcontroller usage was introduced and tested with 89C2051, 89C51, PIC16F84, PIC16F877, Atmega8535 and Atmega128, etc. As a result of test, it was found that saving the cost and time using this suggested device was possible. And also it was very effective way to understand microcontroller design and programming techniques.

  • PDF

Speed Control of Smart Electric Fan using ATmega128 Microcontroller (ATmega128 마이크로 컨트롤러를 사용한 스마트 선풍기 속도제어)

  • Won, Jae-Hyuk;Kim, Jung-Woon;Lee, Song-Jun
    • Proceedings of the KIEE Conference
    • /
    • 2009.04b
    • /
    • pp.281-283
    • /
    • 2009
  • This paper presents the smart fan which is operated by a small conventional motor and an ultrasonic sensor. The smart fan generates cool wind with regulated speed of wing by the distance between the user and the fan. In this research, an 8-bit microcontroller (ATmega128) and an ultrasonic sensor (NT-TS601) are utilized for the system control and sensing information. In order to obtain the speed information from the encoderless DC motor, a stroboscope is used, which provides the voltage variation by the motor speed. The proposed smart fan makes the user feel cool, convenient and safe at a low cost.

  • PDF

A Study on the Tele-Controller System of Navigational Aids Using CDMA Communication (CDMA 통신을 이용한 항로표지의 원격관리시스템에 관한 연구)

  • Jeon, Joong-Sung;Oh, Jin-Seok
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.8
    • /
    • pp.1254-1260
    • /
    • 2009
  • CDMA tele-Controller system is designed with a low power consumption 8 bit microcontroller, ATmega 2560. ATmega 2560 microcontroller consists of 4 UART (Universal asynchronous receiver/transmitter) ports, 4 kbytes EEPROM, 256 kbytes flash memory, 4 kbytes SRAM. 4 URAT is used for CDMA modem, communication for GPS module, EEPROM is used for saving a configuration for program running, a flash memory of 256 kbytes is used for storing a F/W(Firm Ware), and SRAM is used for stack, storing memory of global variables while program running. We have tested the communication distance between the coast station and sea by the fabricated control board using 800 MHz CDMA modem and GPS module, which is building for the navigational aid management system by remote control. As a results, the receiving signal strength is above -80 dBm, and then the characteristics of the control board implemented more than 10 km in the distance of the communication.

Design and implementation of ESD cable Disconnection Monitoring System (ESD 접지선 단선 모니터링 시스템 설계 및 구현)

  • Seong, Jung-Mo;Chung, Young-Suk;Park, Koo-Rack
    • Journal of the Korea Convergence Society
    • /
    • v.8 no.8
    • /
    • pp.77-82
    • /
    • 2017
  • In the splay manufacturing process, conveyor systems are widely used for conveying panels. In this conveyor, a large number of grounding lines are used in order to prevent a product failure due to static electricity. In many cases, the grounding line is disconnected due to the rotation of the transporting roller or curling, leading to product failure. In order to solve such a problem, there is a growing need for a system capable of detecting disconnection of a ground wire in real time. Therefore, in this paper, we propose a disconnection monitoring system of ESD (Electro-Static Discharge) ground wire caused by friction between the conveyor drive part and the panel. The proposed system is a monitoring system that can detect disconnection and disconnection of ground wire using ATmega 2560 and Wheatstone Bridge circuit. It can detect disconnection of ground wire immediately and can take measures to reduce the defect rate due to static electricity. The system proposed in this paper is expected to be applicable to the production and test equipments of all industries where the ground wire is used.