• Title/Summary/Keyword: ATR-FTIR

Search Result 152, Processing Time 0.025 seconds

Fabrication and Characterization of Thermo-responsive Nanofibrous Surfaces Using Electron Beam Irradiation (전자선 조사에 의한 온도응답성 나노섬유 표면의 제조 및 특성분석)

  • Jeon, Hyeon-Ae;Oh, Hwan-Hee;Kim, Young-Jin;Ko, Jae-Eok;Chung, Ho-Yun;Kang, Inn-Kyu;Kim, Won-Il;Kwon, Oh-Hyeong
    • Polymer(Korea)
    • /
    • v.32 no.4
    • /
    • pp.359-365
    • /
    • 2008
  • We have fabricated a novel thermo-responsive nanofibrous surfaces by grafting PIPAAm by electron beam irradiation onto poly(3-hydroxybutyrate-co-3-hydroxyvalerate)(PHBV) nanofibrous mats. The electrospun PHBV nanofiber structures revealed randomly aligned fibers with average diameter of 400 nm. Increased atomic percent of nitrogen was observed on the PIPAAm-grafted PHBV mats after electron beam irradiation determined by ESCA. The amounts of PIPAAm-grafted onto PHBV films were $6.49{\mu}g/cm^2$ determined by ATR-FTIR. The PIPAAm-grafted surfaces exhibited decreasing contact angles by lowering the temperature from 37 to $20^{\circ}C$, while ungrafted PHBV surfaces had negligible contact angle change. This result indicates that PIPAAm surfaces, which are hydrophobic at the higher temperature, became markedly more hydrophilic in response to a temperature reduction due to spontaneous hydration of the surface-grafted PIPAAm. Thermo-responsive nanofibers showed good tissue compatibility. Cultured cells were well detached and recovered from the surfaces by changing culture temperature from 37 to $20^{\circ}C$.

Study on the Copper-Arsenic Green Pigments used on Shamanic Paintings in the 19~20th century (19~20세기 무신도 등에 사용된 구리-비소 녹색 안료에 대한 연구)

  • Oh, Joon Suk;Choi, Jung Eun;Choi, Yoon Hee
    • Journal of Conservation Science
    • /
    • v.31 no.3
    • /
    • pp.193-214
    • /
    • 2015
  • The green pigments of shamanic paintings (83 items) in the 19~20th century were analyzed with X-ray fluorescent spectrometer(XRF), scanning electron microscopy (SEM) and fourier transform infrared spectroscopy (ATR-FTIR). In 60 items, copper and arsenic were detected in green pigments of the paintings by XRF spectra. Cu $K{\alpha}$/As $K{\beta}$ (peak intensity ratio of copper and arsenic) of shamanic paintings of Bokgaedang (shrine), solemn paintings (romance of three kingdoms) of Donggwanwangmyo and unknown enshrined place were 5.93~12.04 and higher compared to 5.67-6.26 of standard emerald greens and 4.01~7.89 of remaining shamanic paintings. The SEM images of crystal forms of copper-arsenic green pigments were various. Crystal forms were divided into oval and round spherulite with intersecting plate crystals and spherulite with agglomerate plate crystals. The crystals of the latter were found in shamanic paintings of Bokgaedang (shrine), solemn paintings (romance of three kingdoms) of Donggwanwangmyo and unknown enshrined place and the former were found in the rest of shamanic paintings. Copper-arsenic green pigments of shamanic paintings were identified as Scheele's green from shamanic paintings of Bokgaedang (shrine) and romance of three kingdoms. Emerald green from the rest of shamanic paintings by ATR-FTIR. From analytical results, it is confirmed that Scheele's green of shamanic paintings of Bokgaedang and romance of three kingdoms was used in the 1850s~1870s and emerald green had been widely used from late 19th century to 1970 in the rest of shamanic paintings.

Reviews in Infrared Spectroscopy and Computational Chemistry to Reveal Rhizospheric Interactions among Organic Acids, Oxyanions and Metal oxides: Fundamental Principles and Spectrum Processing (유기산, 산화음이온 및 금속 산화물 간의 근권 내 상호작용 연구를 위한 계산화학과 적외선 분광학에 관한 총설: 기본적인 원리와 스펙트럼 처리)

  • Han, Junho;Ro, Hee-Myong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.39 no.7
    • /
    • pp.426-439
    • /
    • 2017
  • This review summarizes advantage and limitation in infrared spectroscopy and computational chemistry to understand rhizospheric interaction among organic acids, oxyanions and metal oxides. Since organic acids and metal oxides determine dynamics of oxyanions in the soil environment, knowledge of fundamental mechanisms is a prerequisite for understanding the interactions at soil-water interface. Attenuated total reflectance-fourier transform infrared spectroscopy (ATR-FTIR) is a powerful tool to measure the interfacial reactions. However, the ATR-FTIR measurements are abstruse, because the optical characteristics for measurements are variable depending on the experimental setup. In addition, spectral overlapping is a primary obstacle to the analysis of the interfacial reaction; thus, it is essential to detect and to deconvolute bands for signal interpretation. In this review, we expained the fundamental principle for spectrum processing, and four band identification methods, such as derivative spectroscopy, two-dimension correlation spectroscopy, multivariate curve resolution, and computational chemistry with example of aqueous phosphate speciation. As a result, spectrum processing and computational chemistry improved interpretation and spectral deconvolution of overlapped spectra in relatively simple systems, but it was still unsatisfactory for the problems in more complexed system like nature. Nevertheless, we believed that our challenge would contribute practically to develop adequate analytical procedure, signal processing and protocols that could help to improve interpretation and to understand the interfacial interactions of oxyanions in natural systems.

Biocompatibility of Poly(MPC-co-EHMA)/Poly(L-1actide-co-glycolide) Blends

  • Gilson Khang;Park, Myoung-Kyu;Jong M. Rhee;Lee, Sang-Jin;Lee, Hai-Bang;Yasuhiko Iwasaki;Nobuo Nakabayashi;Kazuhiko Ishihara
    • Macromolecular Research
    • /
    • v.9 no.2
    • /
    • pp.107-115
    • /
    • 2001
  • Poly(L-lactide-co-glycolide)(PLGA) was blended with poly[$\omega$-methacryloyloxyethyl phospho-rylcholine-co-ethylhexylmethacrylate (PMEH)] (PLGA/PMEH) to endow with new functionality i.e., to improve the cell-, tissue- and blood-compatibility. The characteristics of surface properties were investigated by measurement of contact angle goniometer, Fourier-transform infrared spectroscopy with attenuated total reflectance (FTIR-ATR) and electron spectroscopy for chemical analysis (ESCA). NIH/3T3 fibroblast and bovine aortic endothelial cell were cultured on control and PLGA/PMEH surfaces for the evaluation of ceil attachment and proliferation in terms of surface functionality such as the concentration of phosphoryl-choline. Also, the behavior of platelet adhesion on PLGA/PMEH was observed in terms of the surface functionality. The contact angles on control and PLGA/PMEH surfaces decreased with increasing PMEH content from 75$^{\circ}$ to about 43$^{\circ}$. It was observed from the FTIR-ATR spectra that phosphorylcholine groups are gradually increased with increasing blended amount of MPC. The experimental P percent values from ESCA analysis were more 3.28∼7.4 times than that of the theoretical P percent for each blend films. These results clearly indicated that the MPC units were concentrated on the surface of PLGA/PMEH blend. The control and PLGA/PMEH films with 0.5 to 10.0 wt% concentration of PMEH were used to evaluate cell adhesion and growth in terms of phosphorylcholine functionality and wettability. Cell adhesion and growth on PLGA/PMEH surfaces were less active than those of control and both cell number decreased with increasing PMEH contents without the effect of surface wettability. It can be explained that the fibronectin adsorption decreased with an increase in the surface density of phosphorylcholine functional group. One can conclude the amount of the protein adsorption and the adhesion number of cells can be controlled and nonspecifically reduced by the introduction with phosphorylcholine group. Morphology of the adhered platelets on the PLGA/PMEH surface showed lower activating than control and the number of adhered platelets on the PLGA/PMEH sample decreased with increasing the phosphorylcholine contents. The amount of fibrinogen adsorbed on the PLGA/PMEH surface demonstrated that the phospholipid polar group played an important role in reducing protein adsorption on the surface. In conclusion, this surface modification technique might be effectively used PLGA film and scaffolds for controlling the adhesion and growth of cell and tissue, furthermore, blood compatibility of the PLGA was improved by blending of the MPC polymer for the application of tissue engineering fields.

  • PDF

Sulfonated Polystyrene/PTFE Composite Membranes for Direct Methanol Fuel Cell (직접 메탄올 연료전지를 위한 술폰화 폴리스티렌/테플론 복합막 제조 및 특성연구)

  • 김정훈;신정필;박인준;이수복;서동학
    • Membrane Journal
    • /
    • v.14 no.2
    • /
    • pp.173-184
    • /
    • 2004
  • For the application of direct methanol fuel cell (DMFC), sulfonated polystyrene/teflon (PS/PTFE) composite membranes were developed by changing monomer ratio of styrene and DVB. The composite membranes were prepared as follows: first, the monomer mixtures consisting of styrene, divinyl benzene and AIBN were impregnated in porous PTFE film and then, polymerized under 8$0^{\circ}C$ to give PS/PTFE membranes. Finally, the membranes were reacted with chlorosulfonic acid in 1,2-dichloroethane to give the sulfonated composite membranes. The measurements of ATR-FTIR, SEM, solvent uptake test and ion exchange capacity (IEC) were done for the resulting membranes before or after sulfonation, respectively, which showed the composite membranes with proper crosslinking degree and sulfonic acid content were prepared well as a function of styrene/DVB ratio. ion conductivity and methanol permeability were studied for the sulfonated membranes. It was found that with decreasing the ratio of styrene/DVB, methanol permeability decreased from $6.6{\times}10^{-7}∼1.3{\timas}10^{-7}$ $\textrm{cm}^2$/s, which are much lower values than that of Nafion$^{(R)}$117($1.02{\times}10^{-6}$ $\textrm{cm}^2$/s). Under the same monomer condition, ion conductivity decreased from 0.11 S/cm ($25^{\circ}C$) to 0.08 S/cm ($25^{\circ}C$), which are similar or a little higher values compared with $Nafion^{(R)}117 (1.02{\times}10^{-6}$ $\textrm{cm}^2$/s, 0.0824 S/cm). These two results confirmed the composite membranes prepared could be applied successfully to DMFC.C.

Characterization of Crosslinks of Maleic Anhydride-Grafted EPDM/Zinc Oxide Composite Using Dichloroacetic Acid/Toluene Cosolvent and Extraction Temperature (디클로로아세트산/톨루엔 공용매와 추출 온도를 이용한 무수말레산-그래프트 EPDM/산화 아연 복합체의 가교 특성 분석)

  • Kwon, Hyuk-Min;Choi, Sung-Seen
    • Elastomers and Composites
    • /
    • v.48 no.4
    • /
    • pp.288-293
    • /
    • 2013
  • Crosslink characteristics of maleic anhydride-grafted EPDM (MAH-g-EPDM)/zinc oxide composite were investigated by weight losses after dichloroacetic acid (DCA)/toluene cosolvent extraction at different temperatures and by measurement of crosslink densities. The chemical changes were analyzed using attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR). The weight losses by extraction at high temperature ($90^{\circ}C$) were remarkably greater than those at room temperature and those by DCA/toluene cosolvent extraction were greater than those by toluene one by more than 5 times. The crosslink densities were measured after the solvent extraction, and the second crosslink densities were higher than the first ones. The first crosslink density was lower when the extraction temperature was high, and it was much lower for the toluene extraction than for the DCA/toluene cosolvent extraction. The second crosslink density of the sample extracted with DCA/toluene cosolvent was greater than that extracted with toluene. The extracted components were depending on the extraction solvents and temperatures, for example; only strong crosslinked networks were remained when extracting with DCA/toluene cosolvent at high temperature, while only uncrosslinked polymer chains were extracted when extracting with toluene at room temperature. Therefore, crosslink characteristics of the MAH-g-EPDM/zinc oxide composite can be analyzed by comparison of the extracted components according to the extraction solvents and temperatures and by measurement of successive crosslink densities.

Determination of Processing Parameters Affecting the Conversion and Thermal Stability of Photocurable Acrylate-based Binder (아크릴계 광바인더의 전환율과 열안정성 향상을 위한 공정변수 결정)

  • Kim, Byungchul;Seo, Dong Hak;Chae, Heon-Seung;Shin, Seunghan
    • Applied Chemistry for Engineering
    • /
    • v.23 no.1
    • /
    • pp.18-22
    • /
    • 2012
  • Photocurable binder for a transparent glass fiber composite was prepared with alicyclic methacrylate and fluorene-based diacrylate. ANOVA (analysis of variance) analysis was used to know main factors affecting the conversion of photocurable binder. It showed radiation intensity and photoinitiator (PI) concentration were main factors. The conversion of photocurable binder was simply increased with radiation intensity. Its increment however was abated with increasing PI concentration. We found that average conversion of the binder measured by FTIR-ATR was 87% when it was exposed to $5J/cm^2$ of UV dose with 5 wt% of PI. Oxime ester type PI was very effective to get a high degree of conversion, but it caused a yellowing problem. Owing to post-baking process, UV cured film showed an improved thermal stability by increase of conversion and removal of volatile organic compounds. TG% at $260^{\circ}C$ of film cured with 5 wt% of PI (TPO+MBF) and $5J/cm^2$ of UV radiation increased from 95.4 to 99.0% by post-baking at $230^{\circ}C$ for 5 min.

Swelling Behaviors of Maleic Anhydride-Grafted EPDM by Treatment with Dichloroactic Acid (디클로로아세트산 처리에 따른 무수말레산-그래프트 EPDM의 팽윤 거동)

  • Kwon, Hyuk-Min;Choi, Sung-Seen
    • Elastomers and Composites
    • /
    • v.48 no.1
    • /
    • pp.55-60
    • /
    • 2013
  • Swelling behaviors of raw (Specimen-R) and compressed (Specimen-C) samples of maleic anhydride-grafted EPDM (MAH-g-EPDM) depending on the treatment with dichloroacetic acid were investigated. Structural characteristics of the samples were analyzed by nuclear magnetic resonance spectroscopy (NMR) and attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR). When the samples were not treated with dichloroacetic acid, the swelling ratio of Specimen-R was greater than that of Specimen-C by about twice and the swelling ratio change was negligible though the process of swelling and drying was repeated. When the samples were treated with dichloroacetic acid, the first swelling ratios were increased but the second ones were decreased. For the Specimen-C, the swelling ratio of the sample without the dichloroacetic acid treatment and the second swelling ratio of the sample treated with dichloroacetic acid were nearly the same. However, for the Specimen-R, the second swelling ratio of the sample treated with dichloroacetic acid was strikingly lower than that of the sample without the dichloroacetic acid treatment. The swelling ratio change according to the dichloroacetic acid treatment was explained by dissociation of the existing crosslinks and formation of new crosslinks.

Surface Modification of Matrix and filler for Ultra High Density Elastomeric Material (초 고비중 탄성체 개발을 위한 매트릭스 탄성체 표면개질 및 충전제 제어기술 기초연구)

  • Chung, K.;Lee, D.;Yang, K.;Lee, W.;Hong, C.
    • Elastomers and Composites
    • /
    • v.40 no.2
    • /
    • pp.93-103
    • /
    • 2005
  • In this study, surface treatment of the elastomeric matrix was investigated to develop a substituting material for steel dynamic damper of automobile. The key technology is to get ultra high density elastomeric compound in order to substitute steel dynamic damper. The optimum matrix material(chloroprene rubber) and filler(metal powder) were selected for this. The several properties of elastomeric compound were examined. According to the results, the $t_{s2}$ of filled elastomeric compound was decreased with increasing the filler loading whereas the $t_{90}$ was increased. Also, tensile strength and rebound resilience were decreased with filler loading. To solve the problem of high filler loading, the photo grafting technique was employed on elastomeric matrix. The degree of grafting was determined by FTIR-ATR. Also, the filler surface was modified by chemical etching and the surface morphology was examine by SEM. After chemical treatment of filler, the particle size analyzer was used to examined the particle size, size distribution, and morphology of the modified filler.

Study on Scientific Analysis about Red Pigment And Binder - The Korean Ancient Red Pottery - (한국 고대 붉은 간토기의 적색 안료 및 교착제에 대한 과학적 분석)

  • Lee, Ui Cheon;Park, Jung Hae;Lee, Je Hyun;Kim, Soo Chul
    • Journal of Conservation Science
    • /
    • v.37 no.5
    • /
    • pp.606-616
    • /
    • 2021
  • From the collection of the National Kimhae Museum, qualitative analyses using microscopic observation, SEM-EDS, Raman spectroscopy, FT-IR-ATR spectroscopy, and GC-MS were conducted on three burnished red potteries-Jeoksaekmaoyeonwa burnished red pottery (Neolithic age red pottery), Dandomaoyeonwan burnished red pottery(Bronze age red pottery) and Jeoksaekmaoyeongajimun burnished red pottery(Bronze age red pottery)-to investigate the components of the red pigments and the binder. After the layers of the primer were separated from the red surface, crystals of red pigment particles and minerals were found on the red surface. Through SEM-EDS, Raman estimates that the red pigment is Among soil pigments with iron oxide(Fe2O3) as the main color development source, Red Ocher(Fe2O3). A band characteristic of the Urushiol polymer was detected in the FTIR-ATRspectra(4000~600cm-1), GC-MS analysis confirmed the presence of the benzenemethanol-2-prophenyl, 4-heptylphenol, 1-tetracecanol, heptafluorobutyric texidecane, all of which are the ingredients of the directional structure of the lacquer present in the red layer. Therefore, it seemed that the three burnished red pottery: Jeoksaekmaoyeonwan pottery(Neolithic age burnished red pottery), Dandomaoyeonwan pottery(bronze age burnished red pottery) and the Jeoksaekmaoyeongajimun pottery(bronze age burnished red pottery) made by mixing minerals and Red Ocher(Fe2O3), with lacquer.