Biocompatibility of Poly(MPC-co-EHMA)/Poly(L-1actide-co-glycolide) Blends

  • Gilson Khang (Department of Polymer Science and Technology, Chonbuk National University) ;
  • Park, Myoung-Kyu (Department of Polymer Science and Technology, Chonbuk National University) ;
  • Jong M. Rhee (Department of Polymer Science and Technology, Chonbuk National University) ;
  • Lee, Sang-Jin (Biomaterials Laboratory, Korea Research Institute of Chemical Technology) ;
  • Lee, Hai-Bang (Biomaterials Laboratory, Korea Research Institute of Chemical Technology) ;
  • Yasuhiko Iwasaki (Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University) ;
  • Nobuo Nakabayashi (Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University) ;
  • Kazuhiko Ishihara (Department of Materials Science, Graduate School of Engineering, The University of Tokyo)
  • Published : 2001.04.01

Abstract

Poly(L-lactide-co-glycolide)(PLGA) was blended with poly[$\omega$-methacryloyloxyethyl phospho-rylcholine-co-ethylhexylmethacrylate (PMEH)] (PLGA/PMEH) to endow with new functionality i.e., to improve the cell-, tissue- and blood-compatibility. The characteristics of surface properties were investigated by measurement of contact angle goniometer, Fourier-transform infrared spectroscopy with attenuated total reflectance (FTIR-ATR) and electron spectroscopy for chemical analysis (ESCA). NIH/3T3 fibroblast and bovine aortic endothelial cell were cultured on control and PLGA/PMEH surfaces for the evaluation of ceil attachment and proliferation in terms of surface functionality such as the concentration of phosphoryl-choline. Also, the behavior of platelet adhesion on PLGA/PMEH was observed in terms of the surface functionality. The contact angles on control and PLGA/PMEH surfaces decreased with increasing PMEH content from 75$^{\circ}$ to about 43$^{\circ}$. It was observed from the FTIR-ATR spectra that phosphorylcholine groups are gradually increased with increasing blended amount of MPC. The experimental P percent values from ESCA analysis were more 3.28∼7.4 times than that of the theoretical P percent for each blend films. These results clearly indicated that the MPC units were concentrated on the surface of PLGA/PMEH blend. The control and PLGA/PMEH films with 0.5 to 10.0 wt% concentration of PMEH were used to evaluate cell adhesion and growth in terms of phosphorylcholine functionality and wettability. Cell adhesion and growth on PLGA/PMEH surfaces were less active than those of control and both cell number decreased with increasing PMEH contents without the effect of surface wettability. It can be explained that the fibronectin adsorption decreased with an increase in the surface density of phosphorylcholine functional group. One can conclude the amount of the protein adsorption and the adhesion number of cells can be controlled and nonspecifically reduced by the introduction with phosphorylcholine group. Morphology of the adhered platelets on the PLGA/PMEH surface showed lower activating than control and the number of adhered platelets on the PLGA/PMEH sample decreased with increasing the phosphorylcholine contents. The amount of fibrinogen adsorbed on the PLGA/PMEH surface demonstrated that the phospholipid polar group played an important role in reducing protein adsorption on the surface. In conclusion, this surface modification technique might be effectively used PLGA film and scaffolds for controlling the adhesion and growth of cell and tissue, furthermore, blood compatibility of the PLGA was improved by blending of the MPC polymer for the application of tissue engineering fields.

Keywords

References

  1. Encyclopedic Handbook of Biomaterials and Bioengineering v.2 The Use of PLA-PGA Polymers in Orthopedics C. M. Agrawal;G. G. Niederauer;D. M. Micallef;K. A. Athanasiou
  2. J. Oral Maxillofac. Surg. v.45 J. O. Hollinger;J. P. Schmitz
  3. J. Bioeng. v.1 D. F. Williams;E. Mort
  4. J. Bone Joint Surg. v.73-A no.1 O. Bostman
  5. Tissue Engineering v.1 C. M. Agrawal;P. E. Gabriele;G. Niederauer;K. A. Athanasiou
  6. Biotech. Bioeng. v.38 L. G. Cima;D. E. Ingber;J. P. Vacanti;R. Langer
  7. Biomaterials v.14 A. G. Mikos;G. Sarakinos;S. M. Leite;J. P. Vacanti;R. Langer
  8. Biomaterials v.14 H. L. Wald;G. Sarakinos;M. D. Lyman;A. G. Mikos;J. P. Vacanti;R. Langer
  9. J. Biomed. Mater. Res. v.27 A. G. Mikos;Y. Bao;L. G. Cima;D. E. Ingber;J. P. Vacanti;R. Langer
  10. J. Biomed. Mater. Res. v.34 G. G. Giodano;R. C. Thomson;S. L. Ishaug;A. G. Mikos;S. Cumber;C. A. Garcia;D. Lahiri-Munir
  11. J. Biomed. Mater. Res. v.34 D. A. Grande;C. Halberstadt;G. Naughton;R. Schwartz;R. Manji
  12. Biomaterials v.11 H. T. Wang;H. Palmer;R. J. Linhardt;D. R. Flanagan;E. Schmitt
  13. J. Control. Release v.37 A. Carrio;G. Schwach;J. Coudane;M. Vert
  14. J. Control. Release v.37 C. Schmidt;R. Wenz;B. Nies;F. Moll
  15. Korea Polymer J. v.7 J. C. Cho;G. Khang;J. M. Rhee;Y. S. Kim;J. S. Lee;H. B. Lee
  16. Bio-Med. Mater. Eng. v.9 G. Khang;J. C. Cho;J. W. Lee;J. M. Rhee;H. B. Lee
  17. Bio-Med. Mater Eng. v.5 G. Khang;H. B. Lee;J. B. Park
  18. Bio-Med. Mater Eng. v.5 G. Khang;H. B. Lee;J. B. Park
  19. Bio-Med. Mater. Eng. v.5 G. Khang;B. J. Jeong;H. B. Lee;J. B. Park
  20. Bio-Med. Mater. Eng. v.7 G. Khang;J. H. Jeon;J. W. Lee;S. C. Cho;H. B. Lee
  21. Annal. New York Acad. Sci. v.516 A. S. Hoffman
  22. Sensors Actuator B. v.319 M. Sakakida;K. Nishida;M. Schichiri;K. Ishihara;N. Nakabayashi
  23. J. Biomed. Mater. Res. v.43 T. Yoneyama;K. Ishihara;N. Nakabayashi;M. Ito;Y. Mishima
  24. J. Biomater. Sci., Polymer Edn v.10 K. Ishihara;T. Shinozuka;Y. Hanazaki;Y. Iwasaki;N. Nakabayashi
  25. Polym. J. v.22 K. Ishihara;T. Ueda;N. Nakabayashi
  26. J. Biomed. Mater. Res. v.27 K. Ishihara;H. Oshida;Y. Endo;A.Watanabe;T. Ueda;N. Nakabayashi
  27. Trans. Soc. Biomater. v.24 V. A. Tegoulia;X. Y. Yu;S. L. Cooper
  28. Macromolecules v.30 K. G. Maara;T. M. Winger;S. R. Hanson;E. L. Chaikof
  29. J. Biomed. Mater. Res. v.32 A. S. Kohler;P. J. Parks;D. L. Mooradian;G. H. Rao;L. T. Furcht
  30. J. Biomed. Mater. Res. v.40 A. P. van der Heiden;G. M. Willems
  31. Biomaterials v.18 J. N. Baumgartner;C. Z. Yang;S. L. Cooper
  32. J. Biomed. Mater. Res. v.40 J. N. Baumgartner;S. L. Cooper
  33. Biomaterials v.13 K. Ishihara;K. Fukumoto;J.Aoki;N. Nakabayashi
  34. Biomaterials v.13 K. Fukumoto;K. Ishihara;R. Takayama;J. Aoki;N. Nakabayashi
  35. J. Biomater. Sci., Polymer Edn v.6 Y. Iwasaki;K. Kurita;K. Ishihara;N. Nakabayashi
  36. J. Biomater. Sci., Polymer Edn v.8 Y. Iwasaki;K. Kurita;K. Ishihara;N. Nakabayashi
  37. J. Biomed. Mater. Res. v.32 K. Ishihara;S. Tanaka;N. furukawa;K. Kurita;N. Nakabayashi
  38. J. Biomed. Mater. Res. v.32 K. Ishihara;N. Shibata;S. Tanaka;Y. Iwasaki;T. Kurosaki;N. Nakabayashi
  39. J. Biomater. Sci., Polymer Edn v.9 Y. Iwasaki;K. Ishihara;N. Nakabayashi;G. Khang;J. H. Jeon;J. W. Lee;H. B. Lee
  40. Biomaterials v.20 Y. Iwasaki;S. Sawada;N. Nakabayashi;G. Khang;H. B. Lee;K. Ishihara
  41. Biomaterials Research v.1 G. Khang;J. W. Lee;J. H. Jeon;J. H. Lee;H. B. Lee
  42. J. Colloid Interface Sci. v.205 J. H. Lee;G. Khang;J. W. Lee;H. B. Lee
  43. J. Lab. Clin. Med. v.88 E. F. Grabowski;K. K. Herther;P. Didisheim
  44. Biomaterials v.11 K. Park;F. W. Mao;H. Park
  45. Scanning Microscopy no.SUP.3 K. Park;H. Park
  46. J. Biomed. Mater. Res. v.26 T. G. van Kooten;J. M. Schakenraad;H. C. van der Mei;H. J. Busscher
  47. Biomaterials v.22 T. Hasegawa;Y. Iwasaki;K. Ishihara
  48. J. Colloid Interface Sci. v.164 J. -C. Lin;T. -M. Ko;S. L. Cooper
  49. J. Colloid Interface Sci. v.156 T. -M. Ko;J. -C. Lin;S. L. Cooper
  50. Biocompatible Polymers, Metals, and Composites Surface Thermodynamics of Protein Adsorption, Cell Adhesion and Cell Engulfment A. W. Neumann;D. R. Absolom;W. Zingg;C. J. van Oss;D. W. Francis;M. Szycher(ed.)
  51. Surface and Interfacial Aspects of Biomedical Polymers v.2 Principles of Protein Adsorption J. D. Andrade;J. D. Andrade(ed.)
  52. Adv. Polym. Sci. v.79 J. D. Andrade;V. Hlady