DOI QR코드

DOI QR Code

Reviews in Infrared Spectroscopy and Computational Chemistry to Reveal Rhizospheric Interactions among Organic Acids, Oxyanions and Metal oxides: Fundamental Principles and Spectrum Processing

유기산, 산화음이온 및 금속 산화물 간의 근권 내 상호작용 연구를 위한 계산화학과 적외선 분광학에 관한 총설: 기본적인 원리와 스펙트럼 처리

  • Han, Junho (Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University) ;
  • Ro, Hee-Myong (Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University)
  • 한준호 (서울대학교 농생명과학대학 농생명공학부) ;
  • 노희명 (서울대학교 농생명과학대학 농생명공학부)
  • Received : 2017.01.09
  • Accepted : 2017.05.30
  • Published : 2017.07.31

Abstract

This review summarizes advantage and limitation in infrared spectroscopy and computational chemistry to understand rhizospheric interaction among organic acids, oxyanions and metal oxides. Since organic acids and metal oxides determine dynamics of oxyanions in the soil environment, knowledge of fundamental mechanisms is a prerequisite for understanding the interactions at soil-water interface. Attenuated total reflectance-fourier transform infrared spectroscopy (ATR-FTIR) is a powerful tool to measure the interfacial reactions. However, the ATR-FTIR measurements are abstruse, because the optical characteristics for measurements are variable depending on the experimental setup. In addition, spectral overlapping is a primary obstacle to the analysis of the interfacial reaction; thus, it is essential to detect and to deconvolute bands for signal interpretation. In this review, we expained the fundamental principle for spectrum processing, and four band identification methods, such as derivative spectroscopy, two-dimension correlation spectroscopy, multivariate curve resolution, and computational chemistry with example of aqueous phosphate speciation. As a result, spectrum processing and computational chemistry improved interpretation and spectral deconvolution of overlapped spectra in relatively simple systems, but it was still unsatisfactory for the problems in more complexed system like nature. Nevertheless, we believed that our challenge would contribute practically to develop adequate analytical procedure, signal processing and protocols that could help to improve interpretation and to understand the interfacial interactions of oxyanions in natural systems.

이 총설은 근권에서 일어나는 유기산, 산화음이온, 그리고 금속 산화물 간의 상호작용을 이해하는데 활용하고 있는 적외선 분광학과 계산화학에 대한 기본적 원리, 역사, 적용 분야, 장점, 그리고 단점에 대해 최근 연구들을 바탕으로 요약하였다. 식물의 유기산과 금속 산화물은 토양 환경에서 산화음이온의 유효도와 이동성을 결정하기 때문에, 산화음이온의 환경 내 거동을 이해하기 위해서는 계면에서 이들의 상호작용을 이해하는 것이 중요하다. 적외선 분광학의 감쇠 전반사 기법은 계면에서 일어나는 화학적인 반응을 측정하는 강력한 도구이지만, 광학적 특성들이 실험 설계와 대상에 따라 매우 다르게 나타날 수 있으므로 이를 이용한 측정은 까다롭다. 전반사에 의해 발생하는 소멸파의 침투 깊이가 가장 중요한 매개 변수인데, 침투 깊이는 적외선의 입사각과 대상 파장, 그리고 매질의 굴절률에 따라 결정된다. 또한, 적외선을 이용하여 계면에서의 화학반응을 분석할 때 겹쳐서 발생하는 스펙트럼을 해석하는 것 역시 큰 문제이기 때문에, 겹쳐 나타나는 스펙트럼을 해석하여 밴드를 검출하고, 이 스펙트럼을 deconvolution하는 것이 필수적이다. 본 총설에서는 적외선스펙트럼을 처리하는 기본적인 절차와, 밴드 검출에 사용하는 네가지 방법인 도함수 분광학과 이차 상관 분광학, multivariate curve resolution, 계산 화학을 액체상에 존재하는 인산염 종분화로 설명하였다. 스펙트럼 처리와 계산 화학을 조합하였을 때 간단한 계에서 측정한 겹쳐진 스펙트럼 결과는 해석할 수 있었지만, 자연과 같은 복잡계에서 측정한 겹쳐진 스펙트럼을 해석하는 것은 여전히 불가능한 상황이다. 그러나 향후 분석 및 신호 처리 기술 발달에 따라 복잡계뿐만 아니라 자연계에서 일어나는 계면 반응을 해석할 수 있을 것으로 기대한다.

Keywords

Acknowledgement

Supported by : 한국연구재단

References

  1. Johnson, D. L., "Simultaneous Determination of Arsenate and Phosphate in Natural Waters," Environ. Sci. Technol., 5, 411-414(1971). https://doi.org/10.1021/es60052a005
  2. Sparks, D. L., "New Frontiers in Elucidating The Kinetics and Mechanisms of Metal and Oxyanion Sorption at the Soil Mineral/water Interface," J. Plant Nutr. Soil Sci., 163, 563-570(2000). https://doi.org/10.1002/1522-2624(200012)163:6<563::AID-JPLN563>3.0.CO;2-0
  3. Jackson, B. P. and Bertsch, P. M., "Determination of Arsenic Speciation in Poultry Wastes By IC-ICP-MS," Environ. Sci. Technol., 35, 4868-4873(2001). https://doi.org/10.1021/es0107172
  4. Mir, K. A., Rutter, A., Koch, I., Smith, P., Reimer, K. J. and Poland, J. S., "Extraction and Speciation of Arsenic in Plants Grown on Arsenic Contaminated Soils," Talanta, 72, 1507-1518(2007). https://doi.org/10.1016/j.talanta.2007.01.068
  5. Szekeres, M. and Tombacz, E., "Surface Charge Characterization of Metal Oxides by Potentiometric Acid-base Titration, Revisited Theory and Experiment," Colloids Surf., A, 414, 302-313(2012). https://doi.org/10.1016/j.colsurfa.2012.08.027
  6. Su, C. and Suarez, D. L., "Selenate and Selenite Sorption on Iron Oxides," Soil Sci. Soc. Am. J., 64, 101(2000). https://doi.org/10.2136/sssaj2000.641101x
  7. Wei, S., Tan, W., Liu, F., Zhao, W. and Weng, L., "Surface Properties and Phosphate Adsorption of Binary Systems Containing Goethite and Kaolinite," Geoderma, 213, 478-484(2014). https://doi.org/10.1016/j.geoderma.2013.09.001
  8. Goh, K. H. and Lim, T. T., "Geochemistry of Inorganic Arsenic and Selenium in a Tropical Soil: Effect of Reaction Time, PH, and Competitive Anions on Arsenic and Selenium Adsorption," Chemosphere, 55, 849-859(2004). https://doi.org/10.1016/j.chemosphere.2003.11.041
  9. Bucher, M., "Functional Biology of Plant Phosphate Uptake at Root and Mycorrhiza Interfaces," New Phytol., 173, 11-26(2007). https://doi.org/10.1111/j.1469-8137.2006.01935.x
  10. Parker, J. L. and Newstead, S., "Molecular Basis of Nitrate Uptake by the Plant Nitrate Transporter NRT1.1," Nature, 507, 68-72(2014). https://doi.org/10.1038/nature13116
  11. Ariz, I., Cruz, C., Moran, J. F., Gonzalez-Moro, M. B., Garcia-Olaverri, C., Gonzalez-Murua, C., Martins-Loucao, M. a and Aparicio-Tejo, P. M., "Depletion of the Heaviest Stable N Isotope is Associated with $NH_4{^+}/NH_3$ Toxicity in $NH_4{^+}$-fed Plants," BMC Plant Biol., 11, 83(2011). https://doi.org/10.1186/1471-2229-11-83
  12. Arai, Y. and Sparks, D., "Phosphate Reaction Dynamics in Soils and Soil Components: A Multiscale Approach," Adv. Agron., 94, 135-179(2007).
  13. Aufort, J., Segalen, L., Gervais, C., Brouder, C. and Balan, E., "Modeling the Attenuated Total Reflectance Infrared (ATR-FTIR) Spectrum of Apatite," Phys. Chem. Miner.,(2016).
  14. Lopez-Arredondo, D. L., Leyva-Gonzalez, M. A., Gonzalez-Morales, S. I., Lopez-Bucio, J. and Herrera-Estrella, L., "Phosphate Nutrition: Improving Low-phosphate Tolerance in Crops," Annu. Rev. Plant Biol., 65, 95-123(2014). https://doi.org/10.1146/annurev-arplant-050213-035949
  15. Andrew, S., Bob, F. and Paul, W., "Practical and Innovative Measures for the Control of Agricultural Phosphorus Losses To Water," J. Environ. Qual., 29, 1-9(2000).
  16. Zamparas, M. and Zacharias, I., "Restoration of Eutrophic Freshwater by Managing Internal Nutrient Loads. a Review," Sci. Total Environ., 496, 551-562(2014). https://doi.org/10.1016/j.scitotenv.2014.07.076
  17. Riley, W., Ortiz-Monasterio, I. and Matson, P., "Nitrogen Leaching and Soil Nitrate, Nitrite, and Ammonium Levels Under Irrigated Wheat in Northern Mexico," Nutr. Cycl. Agroecosys., 61, 223-236(2001). https://doi.org/10.1023/A:1013758116346
  18. Zhang, H. and Selim, H. M., "Colloid Mobilization and Arsenite Transport in Soil Columns: Effect of Ionic Strength," J. Environ. Qual., 36, 1273-1280(2007). https://doi.org/10.2134/jeq2006.0373
  19. Gadd, G. M., "Metals, Minerals and Microbes: Geomicrobiology and Bioremediation," Microbiol., 156, 609-643(2010). https://doi.org/10.1099/mic.0.037143-0
  20. Bais, H. P., Weir, T. L., Perry, L. G., Gilroy, S. and Vivanco, J. M., "The role of Root Exudates in Rhizosphere Interactions with Plants and Other Organisms," Annu. Rev. Plant Biol., 57, 233-266(2006). https://doi.org/10.1146/annurev.arplant.57.032905.105159
  21. Kim, K., Owens, G. and Naidu, R., "Effect of Root-induced Chemical Changes on Dynamics and Plant Uptake of Heavy Metals In Rhizosphere Soils," Pedosphere, 20, 494-504(2010). https://doi.org/10.1016/S1002-0160(10)60039-2
  22. Baetz, U. and Martinoia, E., "Root Exudates: The Hidden Part of Plant Defense," Trends Plant Sci., 19, 90-98(2014). https://doi.org/10.1016/j.tplants.2013.11.006
  23. McGeehan, S. L., Fendorf, S. E. and Naylor, D. V, "Alteration of Arsenic Sorption in Flooded-dried Soils," Soil Sci. Soc. Am. J., 62, 828-833(1998). https://doi.org/10.2136/sssaj1998.03615995006200030041x
  24. Fan, J. X., Wang, Y. J., Liu, C., Wang, L. H., Yang, K., Zhou, D. M., Li, W. and Sparks, D. L., "Effect of Iron Oxide Reductive Dissolution on the Transformation and Immobilization of Arsenic in Soils: New Insights from X-ray Photoelectron and X-ray Absorption Spectroscopy," J. Hazard. Mater., 279, 212-219(2014). https://doi.org/10.1016/j.jhazmat.2014.06.079
  25. Hind, A. R., Bhargava, S. K. and McKinnon, A., "At The Solid/liquid Interface: FTIR/ATR - the Tool of Choice," Adv. Colloid Interface Sci., 93, 91-114(2001). https://doi.org/10.1016/S0001-8686(00)00079-8
  26. Mudunkotuwa, I. A, Minshid, A. Al and Grassian, V. H., "ATR-FTIR Spectroscopy as a Tool to Probe Surface Adsorption on Nanoparticles at the Liquid-solid Interface in Environmentally and Biologically Relevant Media," Analyst., 139, 870-881(2014). https://doi.org/10.1039/C3AN01684F
  27. Shi, Q.-T. and Yan, W., "Adsorption of Arsenate on Lanthanum-impregnated Activated Alumina: In Situ ATR-FTIR and Two-dimensional Correlation Analysis Study," Chinese Chem. Lett., 26, 200-204(2014).
  28. Max, J.-J. and Chapados, C., "Isotope Effects in Liquid Water by Infrared Spectroscopy. III. $H_2O$ and $D_2O$ Spectra from 6000 To 0 Cm(-1)," J. Chem. Phys., 131, 184505 (2009). https://doi.org/10.1063/1.3258646
  29. Kubicki, J., Paul, K., Kabalan, L. and Zhu, Q., "ATR-FTIR and Density Functional Theory Study of the Structures, Energetics, and Vibrational Spectra of Phosphate Adsorbed onto Goethite," Langmuir,(2012).
  30. Watts, H., Tribe, L. and Kubicki, J., "Arsenic Adsorption onto Minerals: Connecting Experimental Observations with Density Functional Theory Calculations," Minerals, 4, 208-240(2014). https://doi.org/10.3390/min4020208
  31. Carabante, I. and Grahn, M., "In Situ ATR-FTIR Studies on the Competitive Adsorption of Arsenate and Phosphate on Ferrihydrite," J. Colloid Interface Sci., 351, 523-531(2010). https://doi.org/10.1016/j.jcis.2010.07.064
  32. Schrodinger, E., "An Undulatory Theory of The Mechanics of Atoms and Molecules," Phys. Rev., 28, 1049-1070(1926). https://doi.org/10.1103/PhysRev.28.1049
  33. Kim, N., Yoon, S. and Park, G., "Introduction to Computational Chemistry Namseok," KIC News, 15, 23-27(2012).
  34. Blinder, S., "Basic Concepts of Self-consistent-field Theory," Am. J. Phys., 33, 431(1965). https://doi.org/10.1119/1.1971665
  35. Froese Fischer, C., "General Hartree-Fock Program," Comput. Phys. Commun., 43, 355-365(1987). https://doi.org/10.1016/0010-4655(87)90053-1
  36. VandeVondele, J., Troster, P., Tavan, P. and Mathias, G., "Vibrational Spectra of Phosphate Ions in Aqueous Solution Probed by First-principles Molecular Dynamics," J. Phys. Chem. A, 116, 2466-2474(2012). https://doi.org/10.1021/jp211783z
  37. Becke, A. D., "Density-functional Thermochemistry. III. The Role of Exact Exchange," J. Chem. Phys., 98, 5648-5652(1993). https://doi.org/10.1063/1.464913
  38. Stephens, P. J., Devlin, F. J., Chabalowski, C. F. and Frisch, M. J., "Ab Initio Calculation of Vibrational Absorption and Circular Dichroism Spectra Using Density Functional Force Fields," J. Phys. Chem., 98, 11623-11627(1994). https://doi.org/10.1021/j100096a001
  39. Gunnarsson, M., "Surface Complexation at the Iron Oxide/Water Interface," Doctoral dissertation, (2002).
  40. Violante, A., "Elucidating Mechanisms of Competitive Sorption at the Mineral/water Interface," Adv. Agron., 118, 111-176(2013).
  41. Selim, H. M. and Zhang, H., "Modeling Approaches of Competitive Sorption and Transport of Trace Metals and Metalloids in Soils: A Review," J. Environ. Qual., 42, 640-653(2013). https://doi.org/10.2134/jeq2012.0323
  42. Hwang, Y. S. and Lenhart, J. J., "Adsorption of $C_4$-dicarboxylic Acids at the Hematite/water Interface," Langmuir, 24, 13934-13943(2008). https://doi.org/10.1021/la801793p
  43. Lefevre, G., "In Situ Fourier-transform Infrared Spectroscopy Studies of Inorganic Ions Adsorption on Metal Oxides and Hydroxides," Adv. Colloid Interface Sci., 107, 109-123(2004). https://doi.org/10.1016/j.cis.2003.11.002
  44. Cerkez, E. B., Bhandari, N., Reeder, R. J. and Strongin, D. R., "Coupled Redox Transformation of Chromate and Arsenite on Ferrihydrite," Environ. Sci. Technol., 49, 2858-2866(2015). https://doi.org/10.1021/es505666w
  45. Bekiaris, G., Bruun, S., Peltre, C., Houot, S. and Jensen, L. S., "FTIR-PAS: A Powerful Tool for Characterising the Chemical Composition and Predicting the Labile C Fraction of Various Organic Waste Products," Waste Manag., 39, 45-56(2015). https://doi.org/10.1016/j.wasman.2015.02.029
  46. Amma, S. I., Luo, J., Pantano, C. G. and Kim, S. H., "Specular Reflectance (SR) and Attenuated Total Reflectance (ATR) Infrared (IR) Spectroscopy of Transparent Flat Glass Surfaces: A Case Study for Soda Lime Float Glass," J. Non. Cryst. Solids, 428, 189-196(2015). https://doi.org/10.1016/j.jnoncrysol.2015.08.015
  47. Hebert, G. N., Odom, M. A., Bowman, S. C. and Strauss, S. H., "Attenuated Total Reflectance FTIR Detection and Quantification of Low Concentrations of Aqueous Polyatomic Anions," Anal. Chem., 76, 781-787(2004). https://doi.org/10.1021/ac034915i
  48. Hamers, R. J., Stavis, C., Pokhrel, A., Franking, R., Ruther, R. E., Wang, X., Cooperrider, M. C., Zheng, H., Carlisle, J. A. and Butler, J. E., "Characterization of Molecular and Biomolecular Layers on Diamond Thin Films by Infrared Reflection-absorption Spectroscopy," Diam. Relat. Mater., 20, 733-742(2011). https://doi.org/10.1016/j.diamond.2011.03.022
  49. Hase, M., Scheffelmaier, R., Hayden, S. and Rivera, D., "Quantitative in Situ Attenuated Total Internal Reflection Fourier Transform Infrared Study of the Isotherms of Poly (sodium 4-styrene Sulfonate) Adsorption to a $TiO_2$ Surface over a Range of Cetylpyridinium Bromide Monohydrate Concentration," Langmuir, 26, 5534-5543(2010). https://doi.org/10.1021/la903787t
  50. Fang, V., Kennedy, J., Futter, J. and Manning, J., "A Review of Near Infrared Reflectance Properties of Metal Oxide Nanostructures," GNS Science Report, 39, 1-23(2013).
  51. Parikh, S. J., Lafferty, B. J. and Sparks, D. L., "An ATR-FTIR Spectroscopic Approach for Measuring Rapid Kinetics at the Mineral/water Interface," J. Colloid Interface Sci., 320, 177-185(2008). https://doi.org/10.1016/j.jcis.2007.12.017
  52. Wijnja, H. and Schulthess, C., "Vibrational Spectroscopy Study of Selenate and Sulfate Adsorption Mechanisms on Fe and Al (Hydr)oxide Surfaces," J. Colloid Interface Sci., 229, 286-297(2000). https://doi.org/10.1006/jcis.2000.6960
  53. Taga, K., Kellner, R., Kainz, U. and Sleytr, U., "In Situ Attenuated Total Reflectance FT-IR Analysis of an Enzyme-Modified Mid-Infrared Fiber Surface Using Crystalline Bacterial Surface Proteins," Anal. Chem., 66, 35-39(1994). https://doi.org/10.1021/ac00073a008
  54. Madejova, J., "FTIR Techniques in Clay Mineral Studies," Vib. Spectrosc., 31, 1-10(2003). https://doi.org/10.1016/S0924-2031(02)00065-6
  55. Udo, S. and Rochelle, M. C., "Iron Oxides in the Laboratory. Preparation and Characterization," Wiley-vch(2008).
  56. Muller, K. and Lefevre, G., "Vibrational Characteristics of Outer-sphere Surface Complexes: Example of Sulfate Ions Adsorbed onto Metal (Hydr)oxides," Langmuir, 27, 6830-6835(2011). https://doi.org/10.1021/la200514z
  57. Glotch, T. D. and Rossman, G. R., "Mid-infrared Reflectance Spectra and Optical Constants of Six Iron Oxide/oxyhydroxide Phases," Icarus, 204, 663-671(2009). https://doi.org/10.1016/j.icarus.2009.07.024
  58. Rakshit, S., Sallman, B., Davantes, A. and Lefevre, G., "Tungstate (VI) Sorption on Hematite: an in Situ ATR-FTIR Probe on the Mechanism," Chemosphere, 168, 685-691(2017). https://doi.org/10.1016/j.chemosphere.2016.11.007
  59. Tofan-Lazar, J. and Al-Abadleh, H., "Kinetic ATR-FTIR Studies on Phosphate Adsorption on Iron(Oxyhydr)oxides in the Absence and Presence of Surface Arsenic: Molecular-Level Insights into the Ligand Exchange Mechanism," J. Phys. Chem. A, 116, 10143-10149(2012). https://doi.org/10.1021/jp308913j
  60. Kira, O., Linker, R. and Shaviv, A., "A Novel Method Combining FTIR-ATR Spectroscopy and Stable Isotopes to Investigate the Kinetics of Nitrogen Transformations in Soils," Soil Sci. Soc. Am. J., 78, 54(2014). https://doi.org/10.2136/sssaj2013.08.0358dgs
  61. Brechbuhl, Y. and Christl, I., "Competitive Sorption of Carbonate and Arsenic to Hematite: Combined ATR-FTIR and Batch Experiments," J. Colloid Interface Sci., 377, 313-321(2012). https://doi.org/10.1016/j.jcis.2012.03.025
  62. Lindegren, M. and Persson, P., "Competitive Adsorption between Phosphate and Carboxylic Acids: Quantitative Effects and Molecular Mechanisms," Eur. J. Soil Sci., 60, 982-993(2009). https://doi.org/10.1111/j.1365-2389.2009.01171.x
  63. Waiman, C. V, Avena, M. J., Regazzoni, A. E. and Zanini, G. P., "Journal of Colloid and Interface Science a Real Time in Situ ATR-FTIR Spectroscopic Study of Glyphosate Desorption From Goethite as Induced by Phosphate Adsorption : Effect of Surface Coverage," J. Colloid Interface Sci., 394, 485-489(2013). https://doi.org/10.1016/j.jcis.2012.12.063
  64. Du, J., Jing, C., Duan, J., Zhang, Y. and Hu, S., "Removal of Arsenate with Hydrous Ferric Oxide Coprecipitation: Effect of Humic Acid," J. Environ. Sci. (China), 26, 240-247(2014). https://doi.org/10.1016/S1001-0742(13)60437-4
  65. Sabur, M. A. and Al-Abadleh, H. A., "Surface Interactions of Monomethylarsonic Acid With Hematite Nanoparticles Studied Using ATR-FTIR : Adsorption and Desorption Kinetics," Can. J. Chem., 93, 1297-1304(2015). https://doi.org/10.1139/cjc-2015-0350
  66. Elzinga, E. J. and Sparks, D. L., "Phosphate Adsorption onto Hematite: An in Situ ATR-FTIR Investigation of the Effects of PH and Loading Level on The Mode of Phosphate Surface Complexation," J. Colloid Interface Sci., 308, 53-70(2007). https://doi.org/10.1016/j.jcis.2006.12.061
  67. Elzinga, E. J., Huang, J.-H., Chorover, J. and Kretzschmar, R., "ATR-FTIR Spectroscopy Study of the Influence of PH and Contact Time on the Adhesion of Shewanella Putrefaciens Bacterial Cells to the Surface of Hematite," Environ. Sci. Technol., 46, 12848-12855(2012). https://doi.org/10.1021/es303318y
  68. Kuan, D. T., Sawchuk, A. A., Strand, T. C. and Chavel, P., "Adaptive Noise Smoothing Filter for Images with Signal-dependent Noise," IEEE Trans. Pattern Anal. Mach. Intell., 7, 165-177(1985).
  69. Huang, J. B. and Urban, M. W., "Evaluation and Analysis of Attenuated Total Reflectance FT-IR Spectra Using Kramers-Kronig Transforms," Appl. Spectrosc., 46, 1666-1672(1992). https://doi.org/10.1366/0003702924926970
  70. Rieppo, L., Saarakkala, S., Narhi, T., Helminen, H. J., Jurvelin, J. S. and Rieppo, J., "Application of Second Derivative Spectroscopy for Increasing Molecular Specificity of Fourier Transform Infrared Spectroscopic Imaging of Articular Cartilage," Osteoarthritis Cartilage, 20, 451-459(2012). https://doi.org/10.1016/j.joca.2012.01.010
  71. Griffiths, T. R. and Hubbard, H. V. S. A., "Absorption Spectrum of Single-crystal $UO_2$: Identification of and Effect of Temperature on the Peak Positions of Essentially All Optical Transitions in the Visible to Near Infrared Regions Using Derivative Spectroscopy," J. Nucl. Mater., 185, 243-259(1991). https://doi.org/10.1016/0022-3115(91)90510-E
  72. Noda, I., Dowrey, A. E., Marcoli, C., Story, G. M. and Ozaki, Y., "Generalized Two-Dimensional Correlation Spectroscopy," Spectrosc., 54(7), 236A-248A(2000). https://doi.org/10.1366/0003702001950454
  73. Pazderka, T. and Kopecky, Jr, V., "2D Correlation Spectroscopy and its Application in Vibrational Spectroscopy Using Matlab," (2008).
  74. Noda, I., "Techniques of Two-dimensional (2D) Correlation Spectroscopy Useful in Life," Biomed. Spectrosc. Imaging, 4, 109-127(2015).
  75. Planinsek, O., Planinsek, D. and Zega, A., "Surface Analysis of Powder Binary Mixtures with ATR FTIR Spectroscopy," Int. J. Pharm., 319, 13-19(2006). https://doi.org/10.1016/j.ijpharm.2006.03.048
  76. de Juan, A. and Tauler, R., "Multivariate Curve Resolution (MCR) from 2000: Progress in Concepts and Applications," Crit. Rev. Anal. Chem., 36, 163-176(2006). https://doi.org/10.1080/10408340600970005
  77. Ruckebusch, C., Duponchel, L., Huvenne, J. P. and Saurina, J., "Multivariate Curve Resolution of Step-scan FTIR Spectral Data," Vib. Spectrosc., 35, 21-26(2004). https://doi.org/10.1016/j.vibspec.2003.11.002
  78. Kessler, W. and Kessler, R. W., "Multivariate Curve Resolution: A Method of Evaluating the Kinetics of Biotechnological Reactions," Anal. Bioanal. Chem., 384, 1087-1095(2006). https://doi.org/10.1007/s00216-005-0077-7
  79. Ruckebusch, C. and Blanchet, L., "Multivariate Curve Resolution: A Review of Advanced and Tailored Applications and Challenges," Anal. Chim. Acta, 765, 28-36(2013). https://doi.org/10.1016/j.aca.2012.12.028
  80. Jaumot, J., de Juan, A. and Tauler, R., "MCR-ALS GUI 2.0: New Features and Applications," Chemom. Intell. Lab. Syst., 140, 1-12(2015). https://doi.org/10.1016/j.chemolab.2014.10.003
  81. Felten, J., Hall, H., Jaumot, J., Tauler, R., de Juan, A. and Gorzsas, A., "Vibrational Spectroscopic Image Analysis of Biological Material Using Multivariate Curve Resolution-alternating Least Squares (MCR-ALS)," Nat. Protoc., 10, 217-240(2015). https://doi.org/10.1038/nprot.2015.008
  82. Klahn, M., Mathias, G., Kotting, C., Nonella, M., Schlitter, J., Gerwert, K. and Tavan, P., "IR Spectra of Phosphate Ions in Aqueous Solution : Predictions of a DFT / MM Approach Compared with Observations," J. Phys. Chem. A, 108, 6186-6194(2004).
  83. Rudolph D. I. and Gert, W. W. F., "Vibrational Spectroscopic Studies and Density Functional Theory Calculations of Speciation in the $CO_2$-Water System," Appl. Spectrosc., 60, 130-144(2006). https://doi.org/10.1366/000370206776023421
  84. Hanwell, M. D. Lonie, D. C., Vandermeersch, T., Zurek, E. and Hutchison, G. C. D. E., "Avogadro: An Advanced Semantic Chemical Editor, Visualisation, and Analysis Platform," J. Chem. Informatics, 4, 1-17(2012).
  85. Bhandari, N., Hausner, D. B., Kubicki, J. D. and Strongin, D. R., "Photodissolution of Ferrihydrite in the Presence of Oxalic Acid: An in Situ ATR-FTIR/DFT Study," Langmuir, 26, 16246-16253(2010). https://doi.org/10.1021/la101357y
  86. Yaguchi, M., Uchida, T., Motobayashi, K. and Osawa, M., "Speciation of Adsorbed Phosphate at Gold Electrodes: A Combined Surface-Enhanced Infrared Absorption Spectroscopy and DFT Study," J. Phys. Chem. Lett., 7, 3097-3102(2016). https://doi.org/10.1021/acs.jpclett.6b01342