• Title/Summary/Keyword: ATP hydrolysis

Search Result 59, Processing Time 0.03 seconds

Presteady State Kinetics of ATP Hydrolysis by Escherichia coli Rho Protein Monitors the Initiation Process

  • Jeong, Yong-Ju;Kim, Dong-Eun
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.2
    • /
    • pp.224-230
    • /
    • 2006
  • Escherichia coli transcription termination factor Rho catalyzes the unwinding of RNA/DNA duplex in reactions that are coupled to ATP binding and hydrolysis. We report here the kinetic mechanism of presteady state ATP binding and hydrolysis by the Rho-RNA complex. Presteady state chemical quenched-flow technique under multiple turnover condition was used to probe the kinetics of ATP binding and hydrolysis by the Rho-RNA complex. The quenched-flow presteady state kinetics of ATP hydrolysis studies show that three ATPs are bound to the Rho-RNA complex with a rate of $4.4\;{\times}\;10^5M^{-1}s^{-1}$, which are subsequently hydrolyzed at a rate of $88s^{-1}$ and released during the initiation process. Global fit of the presteady state ATP hydrolysis kinetic data suggests that a rapid-equilibrium binding of ATP to Rho-RNA complex occurs prior to the first turnover and the chemistry step is not reversible. The initial burst of three ATPs hydrolysis was proposed to be involved in the initialization step that accompanies proper complex formation of Rho-RNA. Based on these results a kinetic model for initiation process for Rho-RNA complex was proposed relating the mechanism of ATP binding and hydrolysis by Rho to the structural transitions of Rho-RNA complex to reach the steady state phase, which is implicated during translocation along the RNA.

ATP Hydrolysis Analysis of Severe Acute Respiratory Syndrome (SARS) Coronavirus Helicase

  • Lee, Na-Ra;Lee, A-Ram;Lee, Bok-Hui;Kim, Dong-Eun;Jeong, Yong-Joo
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.8
    • /
    • pp.1724-1728
    • /
    • 2009
  • Severe acute respiratory syndrome coronavirus (SARS-CoV) helicase separates the double-stranded nucleic acids using the energy from ATP hydrolysis. We have measured ATPase activity of SARS-CoV helicase in the presence of various types of nucleic acids. Steady state ATPase analysis showed that poly(U) has two-times higher turnover number than poly(C) with lower Michaelis constant. When M13 single-stranded DNA is used as substrate, the Michaelis constant was about twenty-times lower than poly(U), whereas turnover numbers were similar. However, stimulation of ATPase activity was not observed in the presence of double-stranded DNA. pH dependent profiles of ATP hydrolysis with the helicase showed that the optimal ATPase activities were in a range of pH 6.2 ~ 6.6. In addition, ATP hydrolysis activity assays performed in the presence of various divalent cations exhibited that $Mg^{2+}$ stimulated the ATPase activity with the highest rate and $Mn^{2+}$ with about 40% rate as compared to the $Mg^{2+}$.

Physiological Relevance of Salt Environment for in vitro recA System

  • Kim, Jong-Il
    • Journal of Microbiology
    • /
    • v.37 no.2
    • /
    • pp.59-65
    • /
    • 1999
  • RecA protein can promote strand assimilation, homologous pairing, and strand exchange. All these reactions require DNA-dependent ATP hydrolysis by recA protein, and the activities of recA protein are affected by the ionic environment. In this experiment, DNA-dependent ATPase activity showed different sensitivity to anionic species. ATP hydrolysis and strand exchange were relatively sensitive to salt in the reactions with NaCl, strongly inhibited at 100 mM NaCl. However, the inhibition by sodium acetate or sodium glutamate was not observed at 50∼100 mM concentration. Addition of sodium glutamate to the standard reaction condition increased the apparent efficiency of ATP hydrolysis during strand exchange. The condition including 50∼100 mM sodium-glutamate might be similar to the physiological condition.

  • PDF

Mn$2^+$ dependent ClpL ATPase in Streptococcus pneumoniae

  • Park, Moo-Hyun;Kwon, Hyog-Young;Jung, Seung-Ha;Pyo, Suhk-Neung;Rhee, Dong-Kwon
    • Proceedings of the PSK Conference
    • /
    • 2002.10a
    • /
    • pp.336.1-336.1
    • /
    • 2002
  • HSP100/Clp family functions as molecular chaperone and ATP dependent protease. The Streptococcus pneumoniae ClpL. a homologue of bacterial ClpB and yeast cytosolic HSP 104. is one of major heat shock proteins but its biochemical properties are unknown. In this study. ClpL in Streptococcus pneumoniaewas characterized using histidine tagged recombinant ClpL. When ATP hydrolysis activity was compared in the presence or absence of a variety of nucleotides or divalent ions. either ATP or Mn$2^+$ ion was found to increase significantly the rate of ATP hydrolysis. Furthermore. glutaraldehyde cross-linking and subsequent native-PAGE analfysis showed that ClpL forms dimer. but in the presence of 4 mM concentration of $Mn^{2+}$ion as a cofactor for ATP hydrolysis and oligormerization in vitro.

  • PDF

DNA-Independent ATPase Activity of Deinococcus radiodurans RecA Protein Is Activated by High Salt (고농도 염에 의한 Deinococcus radiodurans RecA 단백질의 DNA 비의존성 ATPase 역가의 활성화)

  • Kim, Jong-Il
    • Korean Journal of Microbiology
    • /
    • v.46 no.4
    • /
    • pp.313-318
    • /
    • 2010
  • Deinococcus radiodurans RecA protein, when bound to DNA, exhibits a DNA-dependent ATPase. In the absence of DNA, the rate of RecA protein-promoted ATP hydrolysis drops 1,000-fold under the physiological concentrations of salt. This DNA-independent activity can be stimulated to levels approximating those observed with DNA by adding high concentrations (approximately 1.6 M) of a wide variety of salts. This effect was characterized by varying salt concentration and comparing the effects of different ion types. The higher concentrations of salt stimulated the ATP hydrolysis by RecA protein in the absence of DNA. At 1.6 M chloride, the observed stimulation showed the following cation trend $K^+{\geq}Na^+$ > $NH_4^+$ and the following anion sequence was observed: $glutamate^- \; > \; C1^- \;> \; acetate^-\; > \;PO_4^-$ at 1.6 M $K^+$. The catalytic properties of the salt-stimulated ATP hydrolysis reaction was optimal between pH 7.0 and 8.0, which was similar to the double stran nded DNA-dependent ATPase activities of Deinococcus radiodurans RecA protein. In the absence of DNA the active species for ATP hydrolysis by RecA protein was shown to be an aggregate of three RecA protein molecules.

EXAMINATION OF TYR-264 FOR ATPase ACTIVE SITE IN E.coli RecA PROTEIN BY SITE-DIRECTED MUTAGENESIS

  • Kwon, Yong-Kook;Bae, Jun-Seong;Hahn, Tae-Ryong
    • Journal of Photoscience
    • /
    • v.2 no.1
    • /
    • pp.27-29
    • /
    • 1995
  • Site directed mutagenesis has been introduced to determine active site(s) and molecular structure of E. coli RecA protein. Recombinant DNAs were constructed by point mutation of Tyr-264 to Phe which assumed active site for binding and hydrolysis of ATP. RecA proteins were purified from recombinants containing wild type and mutant genes and analyzed for ATPase activity assay. Result suggests that Tyr-264 is involved in ATP binding rather than ATP hydrolysis.

  • PDF

Analysis of Double Stranded DNA-dependent Activities of Deinococcus radiodurans RecA Protein

  • Kim, Jong-Il
    • Journal of Microbiology
    • /
    • v.44 no.5
    • /
    • pp.508-514
    • /
    • 2006
  • In this study, the double-stranded DNA-dependent activities of Deinococcus radiodurans RecA protein (Dr RecA) were characterized. The interactions of the Dr RecA protein with double-stranded DNA were determined, especially dsDNA-dependent ATP hydrolysis by the Dr RecA protein and the DNA strand exchange reaction, in which multiple branch points exist on a single RecA protein-DNA complex. A nucleotide cofactor (ATP or dATP ) was required for the Dr RecA protein binding to duplex DNA. In the presence of dATP, the nucleation step in the binding process occurred more rapidly than in the presence of ATP. Salts inhibited the binding of the Dr RecA protein to double-stranded DNA. Double-stranded DNA-dependent ATPase activities showed a different sensitivity to anion species. Glutamate had only a minimal effect on the double-stranded DNA-dependent ATPase activities, up to a concentration of 0.7 M. In the competition experiment for Dr RecA protein binding, the Dr RecA protein manifested a higher affinity to double-stranded DNA than was observed for single-stranded DNA.

Identification of a Novel Small Molecule Inhibitor Against SARS Coronavirus Helicase

  • Cho, Jin-Beom;Lee, Jin-Moo;Ahn, Hee-Chul;Jeong, Yong-Joo
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.12
    • /
    • pp.2007-2010
    • /
    • 2015
  • A new chemical inhibitor against severe acute respiratory syndrome (SARS) coronavirus helicase, 7-ethyl-8-mercapto-3-methyl-3,7-dihydro-1H-purine-2,6-dione, was identified. We investigated the inhibitory effect of the compound by conducting colorimetry-based ATP hydrolysis assay and fluorescence resonance energy transfer-based double-stranded DNA unwinding assay. The compound suppressed both ATP hydrolysis and double-stranded DNA unwinding activities of helicase with IC50 values of 8.66 ± 0.26 μM and 41.6 ± 2.3 μM, respectively. Moreover, we observed that the compound did not show cytotoxicity up to 80 μM concentration. Our results suggest that the compound might serve as a SARS coronavirus inhibitor.

A Novel Chemical Compound for Inhibition of SARS Coronavirus Helicase

  • Lee, Jin-Moo;Cho, Jin-Beom;Ahn, Hee-Chul;Jung, Woong;Jeong, Yong-Joo
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.11
    • /
    • pp.2070-2073
    • /
    • 2017
  • We have discovered a novel chemical compound, (E)-3-(furan-2-yl)-N-(4-sulfamoylphenyl) acrylamide, that suppresses the enzymatic activities of SARS coronavirus helicase. To determine the inhibitory effect, ATP hydrolysis and double-stranded DNA unwinding assays were performed in the presence of various concentrations of the compound. Through these assays, we obtained $IC_{50}$ values of $2.09{\pm}0.30{\mu}M$ (ATP hydrolysis) and $13.2{\pm}0.9{\mu}M$ (DNA unwinding), respectively. Moreover, we found that the compound did not have any significant cytotoxicity when $40{\mu}M$ of it was used. Our results showed that the compound might be useful to be developed as an inhibitor against SARS coronavirus.

Single-Molecule Imaging Reveals the Mechanism Underlying Histone Loading of Schizosaccharomyces pombe AAA+ ATPase Abo1

  • Kang, Yujin;Cho, Carol;Lee, Kyung Suk;Song, Ji-Joon;Lee, Ja Yil
    • Molecules and Cells
    • /
    • v.44 no.2
    • /
    • pp.79-87
    • /
    • 2021
  • Chromatin dynamics is essential for maintaining genomic integrity and regulating gene expression. Conserved bromodomain-containing AAA+ ATPases play important roles in nucleosome organization as histone chaperones. Recently, the high-resolution cryo-electron microscopy structures of Schizosaccharomyces pombe Abo1 revealed that it forms a hexameric ring and undergoes a conformational change upon ATP hydrolysis. In addition, single-molecule imaging demonstrated that Abo1 loads H3-H4 histones onto DNA in an ATP hydrolysis-dependent manner. However, the molecular mechanism by which Abo1 loads histones remains unknown. Here, we investigated the details concerning Abo1-mediated histone loading onto DNA and the Abo1-DNA interaction using single-molecule imaging techniques and biochemical assays. We show that Abo1 does not load H2A-H2B histones. Interestingly, Abo1 deposits multiple copies of H3-H4 histones as the DNA length increases and requires at least 80 bp DNA. Unexpectedly, Abo1 weakly binds DNA regardless of ATP, and neither histone nor DNA stimulates the ATP hydrolysis activity of Abo1. Based on our results, we propose an allosteric communication model in which the ATP hydrolysis of Abo1 changes the configuration of histones to facilitate their deposition onto DNA.