Browse > Article
http://dx.doi.org/10.4014/jmb.1507.07078

Identification of a Novel Small Molecule Inhibitor Against SARS Coronavirus Helicase  

Cho, Jin-Beom (Department of Bio and Nanochemistry, Kookmin University)
Lee, Jin-Moo (Department of Bio and Nanochemistry, Kookmin University)
Ahn, Hee-Chul (Department of Pharmacy, Dongguk University)
Jeong, Yong-Joo (Department of Bio and Nanochemistry, Kookmin University)
Publication Information
Journal of Microbiology and Biotechnology / v.25, no.12, 2015 , pp. 2007-2010 More about this Journal
Abstract
A new chemical inhibitor against severe acute respiratory syndrome (SARS) coronavirus helicase, 7-ethyl-8-mercapto-3-methyl-3,7-dihydro-1H-purine-2,6-dione, was identified. We investigated the inhibitory effect of the compound by conducting colorimetry-based ATP hydrolysis assay and fluorescence resonance energy transfer-based double-stranded DNA unwinding assay. The compound suppressed both ATP hydrolysis and double-stranded DNA unwinding activities of helicase with IC50 values of 8.66 ± 0.26 μM and 41.6 ± 2.3 μM, respectively. Moreover, we observed that the compound did not show cytotoxicity up to 80 μM concentration. Our results suggest that the compound might serve as a SARS coronavirus inhibitor.
Keywords
SARS; helicase; ATP hydrolysis; dsDNA unwinding; inhibitor;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Ivanov KA, Thiel V, Dobbe JC, van der Meer Y, Snijder EJ, Ziebuhr J. 2004. Multiple enzymatic activities associated with severe acute respiratory syndrome coronavirus helicase. J. Virol. 78: 5619-5632.   DOI
2 Holmes KV. 2003. SARS coronavirus: a new challenge for prevention and therapy. J. Clin. Invest. 111: 1605-1609.   DOI
3 Borowski P, Schalinski S, Schmitz H. 2002. Nucleotide triphosphatase/helicase of hepatitis C virus as a target for antiviral therapy. Antiviral Res. 55: 397-412.   DOI
4 Baykov AA, Evtushenko OA, Avaeva SM. 1988. A malachite green procedure for orthophosphate determination and its use in alkaline phosphatase-based enzyme immunoassay. Anal. Biochem. 171: 266-270.   DOI
5 Anand K, Ziebuhr J, Wadhwani P, Mesters JR, Hilgenfeld R. 2003. Coronavirus main proteinase (3CLpro) structure: basis for design of anti-SARS drugs. Science 300: 1763-1767.   DOI
6 Adedeji AO, Singh K, Kassim A, Coleman CM, Elliott R, Weiss SR, et al. 2014. Evaluation of SSYA10-001 as a replication inhibitor of severe acute respiratory syndrome, mouse hepatitis, and Middle East respiratory syndrome coronaviruses. Antimicrob. Agents Chemother. 58: 4894-4898.   DOI
7 Adedeji AO, Singh K, Calcaterra NE, DeDiego ML, Enjuanes L, Weiss S, Sarafianos SG. 2012. Severe acute respiratory syndrome coronavirus replication inhibitor that interferes with the nucleic acid unwinding of the viral helicase. Antimicrob. Agents Chemother. 56: 4718-4728.   DOI
8 Stockman LJ, Bellamy R, Garner P. 2006. SARS: systematic review of treatment effects. PLoS Med. 3: e343.   DOI
9 Rota PA, Oberste MS, Monroe SS, Nix WA, Campagnoli R, Icenogle JP, et al. 2003. Characterization of a novel coronavirus associated with severe acute respiratory syndrome. Science 300: 1394-1399.   DOI
10 Patel SS, Picha KM. 2000. Structure and function of hexameric helicases. Annu. Rev. Biochem. 69: 651-697.   DOI
11 Patel SS, Donmez I. 2006. Mechanisms of helicases. J. Biol. Chem. 281: 18265-18268.   DOI
12 Lai MM, Cavanagh D. 1997. The molecular biology of coronaviruses. Adv. Virus Res. 48: 1-100.
13 Marra MA, Jones SJ, Astell CR, Holt RA, Brooks-Wilson A, Butterfield YS, et al. 2003. The genome sequence of the SARS-associated coronavirus. Science 300: 1399-1404.   DOI
14 Lee C, Lee JM, Lee NR, Kim DE, Jeong YJ, Chong Y. 2009. Investigation of the pharmacophore space of severe acute respiratory syndrome coronavirus (SARS-CoV) NTPase/helicase by dihydroxychromone derivatives. Bioorg. Med. Chem. Lett. 19: 4538-4541.   DOI
15 Lee C, Lee JM, Lee NR, Jin BS, Jang KJ, Kim DE, et al. 2009. Aryl diketoacids (ADK) selectively inhibit duplex DNA-unwinding activity of SARS coronavirus NTPase/helicase. Bioorg. Med. Chem. Lett. 19: 1636-1638.   DOI
16 Jang KJ, Lee NR, Yeo WS, Jeong YJ, Kim DE. 2008. Isolation of inhibitory RNA aptamers against severe acute respiratory syndrome (SARS) coronavirus NTPase/helicase. Biochem. Biophys. Res. Commun. 366: 738-744.   DOI
17 Yu MS, Lee J, Lee JM, Kim Y, Chin YW, Jee JG, et al. 2012. Identification of myricetin and scutellarein as novel chemical inhibitors of the SARS coronavirus helicase, nsP13. Bioorg. Med. Chem. Lett. 22: 4049-4054.   DOI
18 Yang N, Tanner JA, Wang Z, Huang JD, Zheng BJ, Zhu N, Sun H. 2007. Inhibition of SARS coronavirus helicase by bismuth complexes. Chem. Commun. (Camb). 42: 4413-4415.   DOI
19 Tanner JA, Zheng BJ, Zhou J, Watt RM, Jiang JQ, Wong KL, et al. 2005. The adamantane-derived bananins are potent inhibitors of the helicase activities and replication of SARS coronavirus. Chem. Biol. 12: 303-311.   DOI
20 Tanner JA, Watt RM, Chai YB, Lu LY, Lin MC, Peiris JS, et al. 2003. The severe acute respiratory syndrome (SARS) coronavirus NTPase/helicase belongs to a distinct class of 5 to 3 viral helicases. J. Biol. Chem. 278: 39578-39582.   DOI