• Title/Summary/Keyword: ASTM E659-78

Search Result 26, Processing Time 0.025 seconds

The Study on Measurement and Prediction of Combustible Properties for Aniline (아닐린의 연소특성치의 측정 및 예측에 관한 연구)

  • Ha, Dong-Myeong
    • Journal of the Korean Institute of Gas
    • /
    • v.18 no.4
    • /
    • pp.44-50
    • /
    • 2014
  • For the safe handling of aniline, this study was investigated the explosion limits of aniline in the reference data. And the lower flash points, upper flash points and AITs(auto-ignition temperatures) by ignition delay time were experimented. The lower flash point of aniline by using Setaflash and Penski-Martens closed-cup testers were experimented $66^{\circ}C$ and $73^{\circ}C$, respectively. The lower flash point aniline by using Tag and Cleveland open cup testers were experimented $72^{\circ}C$ and $78^{\circ}C$, respectively. Also, this study measured relationship between the AITs and the ignition delay times by using ASTM E659 tester for aniline. The experimental AIT of aniline was $590^{\circ}C$. The calculated LEL and UEL by using the measured low flash point and upper flash point were 1.16 Vol.% and 8.36 Vol.%, respectively.

Prediction and Measurement of Autoignition Temperature of Toluene and 2-Butanol System (톨루엔과 2-부탄올 계의 최소자연발화온도의 측정 및 예측)

  • Ha, Dong-Myeong
    • Journal of the Korean Society of Safety
    • /
    • v.30 no.4
    • /
    • pp.73-78
    • /
    • 2015
  • The autoignition temperatures(AIT) of solvent mixture is important index for the safe handling of flammable liquids which constitute the solvent mixtures. Therefore, the AITs of common pure chemical substances are widely reported, but very limited data are available for mixtures. This study, the toluene and 2-butnaol system which used mixture solution solvent was measured the AIT and ignition delay time by using ASTM E659 apparatus. The AITs of toluene and 2-butanol constituted binary system were $547^{\circ}C$ and $400^{\circ}C$, respectively. The experimental AIT of toluene and 2-butanol were a good agreement with the calculated AIT by the proposed equations with a few average absolute deviation(A.A.D.).

Risk Assessment by Means of Measurement of Combustible Characteristics for n-Nonanol (노말노난올의 연소특성치 측정에 의한 위험성 평가)

  • Ha, Dong-Myeong
    • Fire Science and Engineering
    • /
    • v.26 no.2
    • /
    • pp.84-89
    • /
    • 2012
  • For the safe handling of n-nonanol, this study was investigated the explosion limits of n-nonanol in the reference data. The flash points and AITs (autoignition temperatures) by ignition delay time were experimented. As a results, the lower and upper explosion limits of n-nonanol recommended 0.8 Vol.% and 6.1 Vol.%, respectively. The lower flash points of n-nonanol by using closed-cup tester were experimented $94{\sim}97^{\circ}C$. The lower flash points of n-nonanol by using open cup tester were experimented $103{\sim}104^{\circ}C$. This study measured relationship between the AITs and the ignition delay times by using ASTM E659-78 apparatus for n-nonanol. The experimental AIT of n-nonanol was $270^{\circ}C$.

The Measurement and Investigation of Fire and Explosion Properties for Cyclohexane (사이클로헥산의 화재 및 폭발 특성치의 측정 및 고찰)

  • Ha, Dong-Myeong
    • Journal of the Korean Institute of Gas
    • /
    • v.15 no.2
    • /
    • pp.75-81
    • /
    • 2011
  • For the safe handling of cyclohexane, the explosion limit at $25^{\circ}C$ and the temperature dependence of the explosion limits were investigated. Flash point and AIT(autoignition temperature) for cyclohexane were experimented. By using the literatures data, the lower and upper explosion limits of cyclohexane recommended 1.0 Vol% and 9.0 Vol%, respectively. Moreover lower flash points of cyclohexane recommended $-20^{\circ}C$. It was measured relationship between the AITs and the ignition delay times by using ASTM E659-78 apparatus for cyclohexane, and the experimental AIT was $255^{\circ}C$. The new equations for predicting the temperature dependence of the explosion limits of cyclohexane is proposed. The values calculated by the proposed equations were a good agreement with the literature data.

Minimum Autoignition Temperature Behavior(MAITB) of the Flammable Binary Systems (가연성 이성분계의 최소자연발화온도 거동(MAITB))

  • Ha, Dong-Myeong;Lee, Sung-Jin
    • Journal of the Korean Society of Safety
    • /
    • v.23 no.6
    • /
    • pp.70-75
    • /
    • 2008
  • The values of the AIT(Autoignition temperature) for fire and explosion protection are normally the lowest reported. The minimum autoignition temperature behavior(MAITB) of flammable liquid mixtures is exhibited when the AIT of mixture is below the AIT of the individual components. The MAITB is an interesting experimental features, which can be significant from the perspective of industrial safety. In this study, the AITs of m-xylene+n-butyric acid and ethylbenzene+n-butanol systems were measured using ASTM E659-78 apparatus. The AITs of m-xylene, n-butyric acid, ethylbenzene and n-butanol which constituted two binary systems were $587^{\circ}C$, $510^{\circ}C$, $475^{\circ}C$ and $340^{\circ}C$ respectively. The m-xylene+n-butyric acid system is exhibited MAITB at 0.3 mole fraction of m-xylene, and its minimum autoignition temperature was $460^{\circ}C$.

The Investigation of Combustible Hazard by Measurement of Flash Point and Autoignition Temperature of n-Dodecane (노말도데칸의 인화점과 최소발화온도 측정에 의한 연소위험성 고찰)

  • Ha, Dong-Myeong
    • Fire Science and Engineering
    • /
    • v.25 no.2
    • /
    • pp.120-125
    • /
    • 2011
  • For the safe handling of n-dodecane, the explosion limits were investigated and the lower flash points and AITs (autoignition temperatures) by ignition delay time were experimented. By using the literatures data, the lower and upper explosion limits of n-dodecanee recommended 0.6 Vol.% and 4.7 Vol.%, respectively. The lower flash points of n-dodecane by using closed-cup tester were experimented $77^{\circ}$ and $80^{\circ}C$. The lower flash points of n-dodecane by using open cup tester were experimented $84^{\circ}C$ and $87^{\circ}C$. This study measured relationship between the AITs and the ignition delay times by using ASTM E659-78 apparatus for n-dodecane. The experimental AIT of n-dodecane was $222^{\circ}C$.

Measurements of Autoigniton Temperature(AIT) and Time Lag of BTX(Benzene, Toluene, Xylenes) (BTX(Benzene, Toluene, Xylenes)의 자연발화온도와 발화지연시간의 측정)

  • Ha, Dong-Myeong
    • Journal of the Korean Society of Safety
    • /
    • v.21 no.3 s.75
    • /
    • pp.45-52
    • /
    • 2006
  • The AITs(autoignition temperatures) describe the minimum temperature to which a substance must be heated, without the application of a flame or spark, which will cause that substance to ignite. The AITs are often used as a factor in determining the upper temperature limit for processing operations and conditions for handling, storage and transportation, and in determining potential fire hazard from accidental contact with hot surfaces. The measurement AITs are dependent upon many factors, namely initial temperature, pressure, volume, fuel/air stoichiometry, catalyst material, concentration of vapor, time lag. Therefore, the AITs reported by different ignition conditions are sometimes significantly different. This study measured the AITs of benzene, toluene and xylene isomers from time lag using AS1M E659-78 apparatus. The experimental ignition delay times were a good agreement with the calculated ignition delay times by the proposed equations wtih a few A.A.D.(average absolute deviation). Also The experimental AITs of benzene, toluene, o-xylene, m-xylene and p-xylene were $583^{\circ}C,\;547^{\circ}C,\;480^{\circ}C,\;587^{\circ}C,\;and\;557^{\circ}C$, respectively.

Measurement and Investigation of Combustible Characteristics for Risk Assessment of Toluene (톨루엔의 위험성 평가를 위한 연소특성치 측정 및 고찰)

  • Ha, Dong-Myeong;Jeong, Kee-Sin
    • Fire Science and Engineering
    • /
    • v.24 no.2
    • /
    • pp.76-81
    • /
    • 2010
  • For the safe handling of toluene, explosion limit at $25^{\circ}C$ and the temperature dependence of the explosion limits were investigated. And flash point and AIT (Autoignition Temperature) for toluene were experimented. By using the literature data, the lower and upper explosion limits of toluene recommended 1.13 vol% and 7.9 vol%, respectively. In this study, measured the lower and upper flash points of toluene by air-blowing tester were $5^{\circ}C$ and $40^{\circ}C$, respectively. And measured the upper flash points of toluene by Setaflash tester was $41.5^{\circ}C$. This study measured relationship between the AITs and the ignition delay times by using ASTM E659-78 apparatus for toluene, and the experimental AIT of toluene was $547^{\circ}C$. The new equations for predicting the temperature dependence of the explosion limits of toluene is proposed. The values calculated by the proposed equations were a good agreement with the literature data.

The Measurement of Combustible Characteristics of n-Undecane (노말언데칸의 연소특성치의 측정)

  • Ha, Dong-Myeong
    • Fire Science and Engineering
    • /
    • v.27 no.2
    • /
    • pp.11-17
    • /
    • 2013
  • For the safe handling of n-undecane, the lower flash points and the upper flash point, fire point, AITs (auto-ignition temperatures) by ignition delay time were experimented. Also lower and upper explosion limits by using measured the lower and upper flash points for n-undecane were calculated. The lower flash points of n-undecane by using closed-cup tester were measured $59^{\circ}C$ and $67^{\circ}C$. The lower flash points of n-undecane by using open cup tester were measured $67^{\circ}C$ and $72^{\circ}C$, respectively. The fire point of n-undecane by using Cleveland open cup tester was measured $74^{\circ}C$. This study measured relationship between the AITs and the ignition delay times by using ASTM E659 apparatus for n-undecane. The experimental AIT of n-undecane was $198^{\circ}C$. The estimated lower and upper explosion limit by using measured lower flash point $59^{\circ}C$ and upper flash point $83^{\circ}C$ for n-undecane were 0.65 Vol.% and 2.12 Vol.%.