• Title/Summary/Keyword: ASR reaction

Search Result 67, Processing Time 0.031 seconds

Development of HPCI Prediction Model for Concrete Pavement Using Expressway PMS Database (고속도로 PMS D/B를 활용한 콘크리트 포장 상태지수(HPCI) 예측모델 개발 연구)

  • Suh, Young-Chan;Kwon, Sang-Hyun;Jung, Dong-Hyuk;Jeong, Jin-Hoon;Kang, Min-Soo
    • International Journal of Highway Engineering
    • /
    • v.19 no.6
    • /
    • pp.83-95
    • /
    • 2017
  • PURPOSES : The purpose of this study is to develop a regression model to predict the International Roughness Index(IRI) and Surface Distress(SD) for the estimation of HPCI using Expressway Pavement Management System(PMS). METHODS : To develop an HPCI prediction model, prediction models of IRI and SD were developed in advance. The independent variables considered in the models were pavement age, Annual Average Daily Traffic Volume(AADT), the amount of deicing salt used, the severity of Alkali Silica Reaction(ASR), average temperature, annual temperature difference, number of days of precipitation, number of days of snowfall, number of days below zero temperature, and so on. RESULTS : The present IRI, age, AADT, annual temperature differential, number of days of precipitation and ASR severity were chosen as independent variables for the IRI prediction model. In addition, the present IRI, present SD, amount of deicing chemical used, and annual temperature differential were chosen as independent variables for the SD prediction model. CONCLUSIONS : The models for predicting IRI and SD were developed. The predicted HPCI can be calculated from the HPCI equation using the predicted IRI and SD.

Numerical analysis of propagation of macrocracks in 3D concrete structures affected by ASR

  • Moallemi, S.;Pietruszczak, S.
    • Computers and Concrete
    • /
    • v.22 no.1
    • /
    • pp.1-10
    • /
    • 2018
  • In this study an implicit algorithm for modeling of propagation of macrocracks in 3D concrete structures suffering from alkali-silica reaction has been developed and implemented. The formulation of the problem prior to the onset of localized deformation is based on a chemo-elasticity approach. The localized deformation mode, involving the formation of macrocracks, is described using a simplified form of the strong discontinuity approach (SDA) that employs a volume averaging technique enhanced by a numerical procedure for tracing the propagation path in 3D space. The latter incorporates a non-local smoothening algorithm. The formulation is illustrated by a number of numerical examples that examine the crack propagation pattern in both plain and reinforced concrete under different loading scenarios.

Effect of Environmental Conditions on Expansion of Mortar-bar by Alkali-Silica Reaction (환경조건이 알칼리-실리카 반응에 의한 모르타르 봉 길이 팽창에 미치는 영향)

  • Kim, Seong-Kwon;Yun, Kyong-Ku;Hong, Seung-Ho;Kang, Moon-Sik
    • International Journal of Highway Engineering
    • /
    • v.13 no.3
    • /
    • pp.1-6
    • /
    • 2011
  • The possibility of ASR(alkali-silica reaction) for coarse aggregates had known to be low up to recently in Korea. But the distress of ASR was identified and reported by ASTM C 1260 test. The purpose of this paper was to identify the effect of environmental conditions on length expansion of mortar-bar by alkali-silica reaction with KS F 2546 and ASTM C 1260 test. The results of this study were as following; The result of KS F 2546 test for five kinds of aggregates shows that all of them are non-reactive. But that of ASTM C 1260 test shows that all of aggregates except Andesite-2 are over possible reactive because of environmental condition such as external alkali ion by 1N NaOH, high temperature and humidity. The result of variety of NaOH concentration on ASTM C 1260 using Siltstone indicates that length expansion rate increases highly as NaOH concentration increases. And, comparison results of KS F 2546 for Siltstone with that of 0.00N NaOH experiment indicates that length expansion rate increases as temperature and humidity increases.

Water Gas Shift reaction research of the synthesis gas for a hydrogen yield increase (수소 수율 증가를 위한 합성가스의 수성가스전환 반응 연구)

  • Kim, Min-Kyung;Kim, Jae-Ho;Kim, Woo-Hyun;Lee, See-Hoon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.840-843
    • /
    • 2009
  • 폐자동차의 최종처분 과정에서 발생하는 자동차 파쇄 폐기물(Automobile Shredder Dust)은 대부분이 고분자 화합물로 높은 발열량을 가지고 있다. 또한 할로겐족 원소가 포함된 난연성 고분자류가 많아 다이옥신의 생성 우려가 높은 고분자류와 다이옥신 생성의 촉매 역할을 할 수 있는 금속성분이 많이 함유되어 있어 가스화용융시스템에 적용하여 처리하기에 매우 적합한 폐기물이다. 본 연구에서는 ASR의 가스화 용융 시설에서 고농도 CO를 함유한 합성가스를 수성가스전환반응(Water Gas Shift reaction, WGS)을 이용하여 수소의 수율을 높이는 기술을 제시하였다. 가스화 용융 설비에서 배출되는 합성가스 조성을 기준으로 적합한 고정층 WGS 반응기를 설계하고, 고온 촉매(KATALCO 71-5M)와 저온 촉매(KATALCO 83-3X)를 사용하여 실험하였다. 수성가스 반응 후의 가스 조성은 온도가 상승할수록 일산화탄소가 줄어들고 이에 따라 수소와 이산화탄소 발생량이 증가 되어 고온 촉매를 사용했을 경우 일산화탄소 전환율 ($1-CO_{out}/CO_{in}$)은 55.6에서 95.8%까지 상승하였다. 동일한 온도조건에서는 촉매에 관계없이 $CO/H_2$가 감소할수록 전환율도 감소하는 경향을 보였지만 동일한 합성가스 조성에서 일산화탄소 전환율을 비교하면 저온 촉매가 고온 촉매보다 매우 우수함을 알 수 있었다.

  • PDF

Durability Evaluation of Cement Concrete Using Ferrosilicon Industrial Byproduct (페로실리콘 산업부산물 활용 시멘트 콘크리트의 내구성능 평가)

  • Chang-Young Kim;Ki Yong Ann
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.11 no.1
    • /
    • pp.89-96
    • /
    • 2023
  • In this paper, a ferrosilicon by-product was evaluated to confirm the feasibility of recycling it as supplementary cementitious material of ordinary Portland cement in concrete. Three different levels of replacement ratio (10 %, 20 % and 30 % of total binder) were applied to find which is the most beneficial to be used as a binder. Ferrosilicon concrete was initially assessed at setting time and compressive strength. Durability was evaluated by the resistance to chloride penetration test(RCPT) and alkali-silica reaction(ASR) with a comparison to silica fume concrete due to their similarity in chemical composition. The porosimetry and X-ray diffraction analysis along with energy dispersive X-ray spectroscopy give information on the microstructural characteristics of the ferrosilicon concrete. It was found that 10 % ferrosilicon concrete has higher strength while 20 %, 30 % have lower strength than OPC concrete. However, chemical resistance to chloride attack is higher when replacement is increased. Compared to silica fume, the durability of ferrosilicon might be less efficient however, it is obviously beneficial than OPC. High SiO2 content in ferrosilicon results in producing more C-S-H gel which could make denser pore structure. Most of the risk of alkali silica reaction to silicate binders through length change tests was less than 0.2 %, and both mortar using ferrosilicon and silica fume showed better resistance to alkali silica reaction as the substitution rate increased.Reuse of industrial waste rather than producing highly refined additives might reduce environmental load during manufacture and save costs.

Concrete bridge deck deterioration model using belief networks

  • Njardardottir, Hrodny;McCabe, Brenda;Thomas, Michael D.A.
    • Computers and Concrete
    • /
    • v.2 no.6
    • /
    • pp.439-454
    • /
    • 2005
  • When deterioration of concrete is observed in a structure, it is highly desirable to determine the cause of such deterioration. Only by understanding the cause can an appropriate repair strategy be implemented to address both the cause and the symptom. In colder climates, bridge deck deterioration is often caused by chlorides from de-icing salts, which penetrate the concrete and depassivate the embedded reinforcement, causing corrosion. Bridge decks can also suffer from other deterioration mechanisms, such as alkali-silica reaction, freeze-thaw, and shrinkage. There is a need for a comprehensive and integrative system to help with the inspection and evaluation of concrete bridge deck deterioration before decisions are made on the best way to repair it. The purpose of this research was to develop a model to help with the diagnosis of concrete bridge deck deterioration that integrates the symptoms observed during an inspection, various deterioration mechanisms, and the probability of their occurrence given the available data. The model displays the diagnosis result as the probability that one of four deterioration mechanisms, namely shrinkage, corrosion of reinforcement, freeze-thaw and alkali-silica reaction, is at fault. Sensitivity analysis was performed to determine which probabilities in the model require refinement. Two case studies are included in this investigation.

Study on Composite Cathode for YSZ Electrolyte in SOFC (SOFC의 YSZ 전해질에 대한 혼합공기극 연구)

  • Lee, Chang-Bo;Bae, Joong-Myeon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.1 s.256
    • /
    • pp.62-67
    • /
    • 2007
  • Optimization of cathode properties for intermediate temperature-operating SOFC (IT-SOFC) is carried out by using composite-type electrode structure in this study. Composite cathode may lower cathode overpotential by enhancing mixed ionic-electronic conductivity. In this study, particularly, LSM/YSZ, LSF/YSZ, LSCF/CGO, and PSC/CGO were selected as cathode materials. LSM/YSZ composite cathode showed the best performance of about 0.9${\Omega}cm^2$ at $700^{\circ}C$. It is inferred that the resistance is mainly affected by the reactivity between cathode and electrolyte which can cause the formation of resistive phases. Area specific resistance (ASR) characteristics were not changed significantly with decreasing sintering temperature of cathode, because reaction sites were increased even with worse adhesion of cathode on electrolytes.

Prediction of ions migration behavior in mortar under 2-D ALMT application to inhibit ASR

  • Liu, Chih-Chien;Kuo, Wen-Ten
    • Computers and Concrete
    • /
    • v.14 no.3
    • /
    • pp.263-277
    • /
    • 2014
  • This study investigated four electric field configurations of two-dimensional accelerate lithium migration technique (ALMT), including line-to-line, plane-to-line, contour-to-line and plane-to-plane, and analyzed the ion migration behavior and efficiency. It was found that the free ion distribution diagram and voltage distribution diagram were similar, and ions migrated in the power line direction. The electrode modules were used for the mortar specimen with w/c ratio of 0.5. The effectively processed areas accounted for 14.1%, 39.0%, 49.4% and 51.4% of total area respectively on Day 28. Larger electrode area was more advantageous to ion migration. In addition, it was proved that the two-dimensional electric field could be divided into different equifield line active regions, and regarded as affected by one-dimensional electric field, and the ion migration results in various equifield line active regions were predicted by using the duration analysis method based on the theoretical model of ion migration obtained from one-dimensional test.

Material Property Evaluation for UFFA Rapid Setting Concrete including Calcium Hydroxide (수산화칼슘을 첨가한 UFFA 초속경 콘크리트의 물성특성 평가)

  • Jeon, Sung-Il;Nam, Jeong-Hee;An, Ji-Hwan;Kwon, Soo-Ahn
    • International Journal of Highway Engineering
    • /
    • v.10 no.4
    • /
    • pp.189-198
    • /
    • 2008
  • Generally, UFF A(Ultra Fine Fly Ash) has merit that advances a greater concrete workability and activates a greater pozzolanic reaction than common fly ash due to its ultra fine particle size. These properties enhance concrete durability by reducing permeability and increasing resistance of alkali silica reaction(ASR) and sulfate attack, etc. Due to these reasons, UFFA can be used in a rapid setting concrete. The purpose of this study is to develop and evaluate the rapid setting concrete with UFF A as a repair material for early-opening-to-traffic. In previous studies, if only UFFA is added to the rapid setting concrete mixture, pozzolanic reaction doesn't happen actively. Therefore, in this study, the chemical and physical tests were performed for rapid setting concrete with UFFA including calcium hydroxide and the activity of pozzolanic reaction was evaluated. Finally, the effectiveness of this mixture on enhancing concrete durability was investigated. As results, adding UFF A decreased the water/cement ratio of concrete, and compensated the reduced portion of the early strength of concrete. Also, rapid setting concrete with UFFA including calcium hydroxide activated a greater pozzolanic reaction than normal-UFF A concrete. As calcium hydroxide increases, electrical indication of concrete's ability to resist chloride ion penetration is promoted significantly.

  • PDF

Temperature Reduction of Concrete Pavement Using Glass Bead Materials

  • Pancar, Erhan Burak;Akpinar, Muhammet Vefa
    • International Journal of Concrete Structures and Materials
    • /
    • v.10 no.1
    • /
    • pp.39-46
    • /
    • 2016
  • In this study, different proportions of glass beads used for road marking were added into the concrete samples to reduce the temperature gradient through the concrete pavement thickness. It is well known that decreasing the temperature gradient reduces the risk of thermal cracking and increases the service life of concrete pavement. The extent of alkali-silica reaction (ASR) produced with partial replacement of fine aggregate by glass bead was investigated and compressive strength of concrete samples with different proportion of glass bead in their mix designs were measured in this study. Ideal results were obtained with less than 0.850 mm diameter size glass beads were used (19 % by total weight of aggregate) for C30/37 class concrete. Top and bottom surface temperatures of two different C30/37 strength class concrete slabs with and without glass beads were measured. It was identified that, using glass bead in concrete mix design, reduces the temperature differences between top and bottom surfaces of concrete pavement. The study presented herein provides important results on the necessity of regulating concrete road mix design specifications according to regions and climates to reduce the temperature gradient values which are very important in concrete road design.