Browse > Article
http://dx.doi.org/10.12989/cac.2018.22.1.001

Numerical analysis of propagation of macrocracks in 3D concrete structures affected by ASR  

Moallemi, S. (Department of Civil Engineering, McMaster University)
Pietruszczak, S. (Department of Civil Engineering, McMaster University)
Publication Information
Computers and Concrete / v.22, no.1, 2018 , pp. 1-10 More about this Journal
Abstract
In this study an implicit algorithm for modeling of propagation of macrocracks in 3D concrete structures suffering from alkali-silica reaction has been developed and implemented. The formulation of the problem prior to the onset of localized deformation is based on a chemo-elasticity approach. The localized deformation mode, involving the formation of macrocracks, is described using a simplified form of the strong discontinuity approach (SDA) that employs a volume averaging technique enhanced by a numerical procedure for tracing the propagation path in 3D space. The latter incorporates a non-local smoothening algorithm. The formulation is illustrated by a number of numerical examples that examine the crack propagation pattern in both plain and reinforced concrete under different loading scenarios.
Keywords
3D crack propagation; volume averaging; alkali-silica reaction; reinforced concrete;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Hillerborg, A., Modeer, M. and Petersson, P.E. (1976), "Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements", Cement Concrete Res., 6(6), 773-781.   DOI
2 Jager, P., Steinmann, P. and Kuhl, E. (2008), "Modeling threedimensional crack propagation-A comparison of crack path tracking strategies", Int. J. Numer. Meth. Eng., 76(9), 1328-1352.   DOI
3 Larive, C. (1998), "Apports combines de l'experimentation et de la modelisation a la comprehension de l‟alcali reaction et de ses effets mecaniques.", Labratorie Central des Ponts et Chaousses (LCPC), Paris, France.
4 Leger, P., Cote, P. and Tinawi, R. (1996), "Finite element analysis of concrete swelling due to alkali-aggregate reactions in dams", Comput. Struct., 60(4), 601-611.   DOI
5 Linder, C. and Armero, F. (2007), "Finite elements with embedded strong discontinuities for the modeling of failure in solids", Int. J. Numer. Meth. Eng., 72(12), 1391-1433.   DOI
6 Manzoli, O.L. and Shing, P.B. (2006), "A general technique to embed non-uniform discontinuities into standard solid finite elements", Comput. Struct., 84(10), 742-757.   DOI
7 Mariani, S. and Perego, U. (2003), "Extended finite element method for quasi-brittle fracture", Int. J. Numer. Meth. Eng., 58(1), 103-126.   DOI
8 Moallemi, S. and Pietruszczak, S. (2017), "Analysis of localized fracture in 3D reinforced concrete structures using volume averaging technique", Finite Elem. Anal. Des., 125, 41-52.   DOI
9 Moes, N. and Belytschko, T. (2002), "Extended finite element method for cohesive crack growth", Eng. Fract. Mech., 69(7), 813-833.   DOI
10 Moes, N., Dolbow, J. and Belytschko, T. (1999), "A finite element method for crack growth without remeshing", Int. J. Numer. Meth. Eng., 46(1), 131-150.   DOI
11 Pan, J. Feng, Y., Jin, F., Zhang, C. and Owen, D.R.J. (2014), "Comparison of different fracture modelling approaches to gravity dam failure", Eng. Comput., 31(1), 18-32.   DOI
12 Multon, S., Cyr, M., Sellier, A., Leklou, N. and Petit, L. (2008), "Coupled effects of aggregate size and alkali content on ASR expansion", Cement Concrete Res., 38(3), 350-359.   DOI
13 Oliver, J. (1996), "Modelling strong discontinuities in solid mechanics via strain softening constitutive equations. Part 1: Fundamentals", Int. J. Numer. Meth. Eng., 39(21), 3575-3600.   DOI
14 Oliver, J., Huespe, A.E. and Sanchez, P.J. (2006), "A comparative study on finite elements for capturing strong discontinuties: EFEM vs X-FEM", Comput. Meth. Appl. Mech. Eng., 195(37), 4732-4752.   DOI
15 Pan, J., Feng, Y., Jin, F. and Zhang, C. (2013), "Numerical prediction of swelling in concrete arch dams affected by alkaliaggregate reaction", Eur. J. Environ. Civil Eng., 17(4), 231-247.   DOI
16 Pietruszczak, S. (1999), "On homogeneous and localized deformation in water-infiltrated soils", Int. J. Damage Mech., 8(3), 233-253.   DOI
17 Pan, J., Feng, Y., Wang, J., Sun, Q., Zhang, C. and Owen, D. (2012), "Modeling of alkali-silica reaction in concrete: a review", Front. Struct. Civil Eng., 6(1), 1-18.
18 Pan, J., Zhang, C., Xu, Y. and Jin, F. (2011), "A comparative study of the different procedures for seismic cracking analysis of concrete dams", Soil Dyn. Earthq. Eng., 31(11), 1594-1606.   DOI
19 Pietruszczak, S. (1996), "On the mechanical behaviour of concrete subjected to alkali-aggregate reaction", Comput. Struct., 58(6), 1093-1097.   DOI
20 Pietruszczak, S. and Haghighat, E. (2013), "Assessment of slope stability in cohesive soils due to a rainfall", Int. J. Numer. Anal. Meth. Geomech., 37(18), 3278-3292.   DOI
21 Sukumar, N., Moes, N., Moran, B. and Belytschko, T. (2000), "Extended finite element method for three-dimensional crack modelling", Int. J. Numer. Meth. Eng., 48(11), 1549-1570.   DOI
22 Pietruszczak, S., Ushaksaraei, R. and Gocevski, V. (2013), "Modelling of the effects of alkali-aggregate reaction in reinforced concrete structures", Comput. Concrete, 12(5), 627-650.   DOI
23 Sancho, J.M., Planas, J., Cendon, D.A., Reyes, E. and Galvez, J.C. (2007), "An embedded crack model for finite element analysis of concrete fracture", Eng. Fract. Mech., 74 (1), 75-86.   DOI
24 Saouma, V. and Perotti, L. (2006), "Constitutive model for alkaliaggregate reactions", ACI Mater. J., 103(3), 194-202.
25 Sellier, A., Bourdarot, E., Multon, S., Cyr, M. and Grimal, E. (2009), "Combination of structural monitoring and laboratory tests for assessment of alkali-aggregate reaction swelling: Application to gate structure dam", ACI Mater. J., 106(3), 281-290.
26 Simo, J.C., Oliver, J. and Armero, F. (1993), "An analysis of strong discontinuities induced by strain-softening in rateindependent inelastic solids", Comput. Mech., 12(5), 277-296.   DOI
27 Swamy, R.N. and Al-Asali, M. (1990), "Control of alkali-silica reaction in reinforced concrete beams", ACI Mater. J., 87(1), 38-46.
28 Ulm, F.J., Coussy, O., Li, K.F. and Larive, C. (2000), "Thermochemo-mechanics of ASR expansion in concrete structures", J. Eng. Mech., ASCE, 126 (3), 233-242.   DOI
29 Pietruszczak, S. and Mroz, Z. (1981), "Finite-element analysis of deformation of strain-softening materials", Int. J. Numer. Meth. Eng., 17(3), 327-334.   DOI
30 Wells, G.N. and Sluys, L.J. (2001), "A new method for modelling cohesive cracks using finite elements", Int. J. Numer. Meth. Eng., 50(12), 2667-2682.   DOI
31 Devloo, P. (1991), "A three-dimensional adaptive finite element strategy", Comput. Struct., 38(2), 121-130.   DOI
32 Winkler, B., Hofstetter, G. and Niederwanger, G. (2001), "Experimental verification of a constitutive model for concrete cracking", Proc. Inst. Mech. Eng., Part L: J. Mater. Des. Appl., 215(2), 75-86.   DOI
33 Bazant, Z.P. and Steffens, A. (2000), "Mathematical model for kinetics of alkali-silica reaction in concrete", Cement Concrete Res., 30(3), 419-428.   DOI
34 Bazant, Z.P., Zi, G. and Meyer, C. (2000), "Fracture mechanics of ASR in concretes with waste glass particles of different sizes", J. Eng. Mech., ASCE, 126(3), 226-232.   DOI
35 Winnicki, A., Serega, S. and Norys, F. (2014), "Chemoplastic modeliing of alkali-silica reaction (ASR)", Comput. Model. Concrete Struct. (EURO-C), 2, 765-774.
36 Zienkiewicz, O.C., Huang, M.S. and Pastor, M. (1995), "Localization problems in plasticity using finite-elements with adaptive remeshing", Int. J. Numer. Anal. Meth. Geomech., 19(2), 127-148.   DOI
37 Belytschko, T. and Tabbara, M. (1993), "H-adaptive finiteelement methods for dynamic problems, with emphasis on localization", Int. J. Numer. Meth. Eng., 36(24), 4245-4265.   DOI
38 Berra, M., Faggiani, G., Mangialardi, T. and Paolini, A.E. (2010), "Influence of stress restraint on the expansive behaviour of concrete affected by alkali-silica reaction", Cement Concrete Res., 40(9), 1403-1409.   DOI
39 Bresler, B. and Scordelis, A.C. (1963), "Shear strength of reinforced concrete beams", ACI J. Proc., 60(1), 51-74.
40 Capra, B. and Bournazel, J.P. (1998), "Modeling of induced mechanical effects of alkali-aggregate reactions", Cement Concrete Res., 28(2), 251-260.   DOI
41 Diamond, S. and Thaulow, N. (1974), "A study of expansion due to alkali-silica reaction as conditioned by the grain size of the reactive aggregate", Cement Concrete Res., 4(4), 591-607.   DOI
42 Dumstorff, P. and Meschke, G. (2007), "Crack propagation criteria in the framework of X-FEM-based structural analyses", Int. J. Numer. Anal. Meth. Geomech., 31(2), 239-259.   DOI
43 Gasser, T.C. and Holzapfel, G.A. (2006), "3d crack propagation in unreinforced concrete.: A two-step algorithm for tracking 3d crack paths", Comput. Meth. Appl. Mech. Eng., 195(37), 5198-5219.   DOI
44 Haghighat, E. and Pietruszczak, S. (2015), "On modeling of discrete propagation of localized damage in cohesive-frictional materials", Int. J. Numer. Anal. Meth. Geomech., 39(16), 1774-1790.   DOI
45 Haghighat, E. and Pietruszczak, S. (2016), "On modeling of fractured media using an enhanced embedded discontinuity approach", Ext. Mech. Lett., 6, 10-22.   DOI