• Title/Summary/Keyword: ASPEN simulation

Search Result 84, Processing Time 0.028 seconds

Separation Study of Cytosine and Guanine by HPLC and Aspen Chromatography (Aspen Chromatography 전산모사와 HPLC를 이용한 구아닌 시토신의 분리특성연구)

  • Park, Moon Bae;Kim, In Ho
    • Korean Chemical Engineering Research
    • /
    • v.48 no.1
    • /
    • pp.88-92
    • /
    • 2010
  • DNA structure studies attract many interests in pharmaceutical, biochemical and medical disciplines. Among them, base pairs play a vital role in biological information transfer. Therefore, they need to be analyzed in various ways and the pair of guaninine and cytosine is the present analytical object. Separation of guanine and cytosine was researched by Aspen chromatography simulator and HPLC(High Performance Liquid Chromatography) experiments. Aspen chromatography simulation resulted in various chromatograms with changes of sample concentration, eluent flow rate and number of plate. The resolutions and yields of guanine and cytosine were calculated to obtain a best separation condition. $C_{18}$ HPLC column and water/methanol/acetic acid mixture(90/10/0.2) were used for separation of guanine and cytosine. HPLC parameters(resolution and number of theoretical plate) were calculated under different flow rates and sample concentrations. Aspen chromatography simulation and HPLC experimental results were compared with fair agreement.

Batch Chromatography Simulation of Tröger base by Aspen Chromatography (Aspen Chromatography에 의한 Tröger base의 회분식 크로마토그라피 전산모사)

  • Kim, Jung-Ae;Park, Moon-Bae;Kim, In Ho
    • Korean Chemical Engineering Research
    • /
    • v.47 no.5
    • /
    • pp.615-619
    • /
    • 2009
  • (+)-$Tr{\ddot{o}}ger$'s base in $Tr{\ddot{o}}ger$'s base racemates that inhibits thromboxane A2($T{\times}A2$) synthase has been used to treat arteriosclerosis. Separation of (+)-$Tr{\ddot{o}}ger$'s base by chromatography has become a major concern. However separation experiments of (+)-$Tr{\ddot{o}}ger$'s base need time and consumables so that simulation with Aspen Chromatography could save time and costs by predicting the efficiency of separation. Injection amount and eluent flow rate were varied to compare the resolutions and yields of TB(-) and TB(+). Highest resolution and yield were attained at the eluent rate of 0.25 mL/min. Isotherms representing the relationship between mobile phase concentration and stationary phase concentration were changed to get the best separation with Ideal Adsorbed Solution(IAS) Statistical Lanmuir isotherms.

Simulation and Control of the Molten Carbonate System using Aspen $Dynamics^{TM}$ and ACM (Aspen $Dynamics^{TM}$와 ACM을 이용한 용융탄산염 연료전지 시스템의 모사 및 제어)

  • Jeon, Kyoung Yein;Kwak, Ha Yeon;Kyung, Ji Hyun;Yoo, Ahrim;Lee, Tae Won;Lee, Gi Pung;Moon, Kil Ho;Yang, Dae Ryook
    • Korean Chemical Engineering Research
    • /
    • v.49 no.4
    • /
    • pp.423-431
    • /
    • 2011
  • Recentincreasing awareness of the environmental damage caused by the $CO_2$ emission of fossil fuelsstimulated the interest in alternative and renewable sources of energy. Fuel cell is a representative example of hydrogen energy utilization. In this study, Molten Carbonate Fuel Cell system is simulated by using $Aspen^{TM}$. Stack model is consisted of equilibrium reaction equations using $ACM^{TM}$(Aspen Custom Modeler). Balance of process of fuel cell system is developed in Aspen $Plus^{TM}$ and simulated at steady-state. Analysis of performance of the system is carried out by using sensitivity analysis tool with main operating parameters such as current density, S/C ratio, and fuel utilization and recycle ratio.In Aspen $Dynamics^{TM}$, dynamics of MCFC system is simulated with PID control loops. From the simulation, we proposed operation range which generated maximum power and efficiency in MCFC power plant.

Ozone Damage Assessment of Aspen at the Five Sites in Seoul Using a Computer Simulation Model of Individual Tree Growth, TREGRO

  • Yun, Sung-Chul;John A. Laurence;Park, Eun-Woo
    • The Plant Pathology Journal
    • /
    • v.15 no.4
    • /
    • pp.210-216
    • /
    • 1999
  • TREGRO, a computer simulation model of individual tree growth, was applied to estimate ozone ($\textrm{O}_3$) effects on aspen(Populus tremuloides) growth under ambient and 1.7 times ambient $\textrm{O}_3$ of Seoul in 1996. The three highest $\textrm{O}_3$ (Kuui-dong, Ssangmun-dong, Sungsoo-dong) and the two lowest $\textrm{O}_3$ sites (Mapo-dong, Namgajwa-dong) were evaluated. The current ambient $\textrm{O}_3$ did not affect aspen growth compared to simulation without $\textrm{O}_3$. The only effect was 6.6 percent of total assimilated carbonloss at Ssangmun-dong where the level of $\textrm{O}_3$ was greatest among the 21 sites examined. Decrease as much as 50 percent of total carbon gain was calculated at 1.7 times ambient $\textrm{O}_3$ of the three highest sites. The carbon loss by $\textrm{O}_3$ came from biomass of tissues and total nonstructural cabron (TNC) such as starch and sugar. The most sensitive fraction was TNC and the next was root biomass. Foliage mass was not affected by $\textrm{O}_3$. Structural biomass loss was at best 1 to 3 percent at 1.7 times ambient $\textrm{O}_3$ at the two lowest sites. The daily carbon simulation was affected by $\textrm{O}_3$ mainly during Growth Period 4 (Jul. 21-Oct. 26). Correlations between site, dose, and the simulated responses of aspen (tissue biomass, TNC, respiration, and senescence) ranged from -0.703 to -0.973 depending on the plant responses. The ozone effects on poplar in Seoul are not severe currently, but are probably measurable at Ssangmun-dong. However, severe $\textrm{O}_3$ effects on biomass would occur if $\textrm{O}_3$ levels increase to 1.7 times ambient $\textrm{O}_3$ in Seoul. In addition, v could weaken the trees thus increasing susceptibility to pathogens or insects.

  • PDF

Optimization of thermal network of compact fuel processor for PEMFCs using Aspen plus simlation (Aspen plus 전산모사를 통한 연료전지용 컴팩트 연료개질기 열교환망 최적화)

  • Jung, Un-Ho;Koo, Kee-Young;Yoon, Wang-Lai
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.207-207
    • /
    • 2009
  • Aspen plus는 Aspentech사에서 개발한 공정모사용 프로그램으로서 다양한 화학종의 열역학적 자료를 기반으로 공정설계, 공정최적화, 공정모니터링 등 공정개발에 활용되고 있다. 연료개질기는 수증기 개질반응, 수성가스전이반응, 선택적화학반응으로 구성된 소규모 수소생산공정에 해당된다. 따라서 Aspen 전산모사를 통해 다양한 조건에서의 운전결과를 모사하여 개질기에 미치는 영향을 분석함으로써 운전조건을 최적화 할 수 있다. 연료개질기의 성능에 영향을 미치는 주요인자는 주로 수증기개질 촉매층 출구온도 및 수증기/탄소 비이다. 수증기개질 촉매층의 출구온도를 $660{\sim}740^{\circ}C$로 변화시키면서 개질가스의 조성, 카본 전환율, 개질효율 등을 비교 분석하였다. 또한 수증기/탄소 비를 3~5의 범위에서 변화시키면서 영향을 살펴보았다. 수증기개질 촉매층의 온도가 높을수록 수소생산량이 증가에 따른 효율 증가가 나타났으며 수증기/탄소 비가 증가할 경우에도 개질효율에 긍정적인 영향을 미치는 것을 확인하였다. 하지만 실제 개질기의 운전에서는 소재의 제약에 따라 운전 온도에 제약이 있으며 수증기/탄소비의 증가 역시 개질기의 부피 증가로 이어지는 단점이 있다는 것을 고려해야 한다. 따라서 반응기 재질, 크기, 운전온도와 개질효율과의 상관관계를 파악하여 개질기의 특성을 최적화 하여야 한다.

  • PDF

Simulation of SMB [Simulated Moving Bed] Chromatography for Separation of L-ribose and L-arabinose by ASPEN chromatography (L-ribose와 L-arabinose 분리를 위한 Aspen chromatography를 이용한 SMB [Simulated moving bed] 전산모사)

  • Lee, Seon-Hee;Lee, Eun;Kim, In-Ho
    • KSBB Journal
    • /
    • v.23 no.2
    • /
    • pp.135-141
    • /
    • 2008
  • SMB (simulated moving bed) chromatography is a very useful utility for the separation of binary system. We simulated the separation of L-arabinose and L-ribose from the mixture by using lab-scale 4(1-1-1-1)-zone SMB chromatography. Preliminary experiments of PIM (pulse input method) were performed to measure adsorption isotherms of L-ribose and L-arabinose in $NH_2$ HPLC column, and experimental and simulated results from ASPEN chromatography were compared. To find the most suitable separation condition in SMB, we carried out a simulation in $m_2-m_3$ plane base on the triangle theory and calculated operating parameters (flow rate of four zone, switching time and feed concentration and so on) using ASPEN chromatography under the conditions of linear isotherms obtained from PIM.

The Reduced Steam Consumptions in the Evaporation Process Using a Vapor Recompression (증기 재압축을 활용한 증발공정에서 스팀 절감에 대한 연구)

  • Noh, Sang Gyun
    • Clean Technology
    • /
    • v.22 no.4
    • /
    • pp.225-231
    • /
    • 2016
  • In this study, modeling and optimization study have been performed to obtain $1,524.58kg\;h^{-1}$ of a solidified NaCl by evaporating a 21.0 wt% of NaCl aqueous solution in order to reduce the steam consumption from $3,139kg\;h^{-1}$ to $496kg\;h^{-1}$ using a two-stage evaporation and a vapor recompression processes. Aspen Plus release 8.8 at AspenTech was utilized for the modeling of two stage evaporation process and PRO/II with PROVISION release 9.4 at Schneider Electric was also used for the simulation of two-stage vapor recompression process with an inter-cooler. For the simulation of the evaporation process containing NaCl aqueous solution, Aspen Plus release 8.8 at AspenTech Inc. was utilized and for the modeling of vapor recompression process PRO/II with PROVISION release at Schneider Electric Inc. For the vapor recompression process, single stage compression and two-stage compression system was compared.

Experimental and Simulation Study of Lysozyme Separation in Cation Exchange Chromatography (양이온교환 크로마토그래피에서 Lysozyme 분리 실험과 전산모사)

  • Kim, Jung-Ae;Seong, Yeon-Kyeong;Kim, In-Ho
    • KSBB Journal
    • /
    • v.21 no.3
    • /
    • pp.220-223
    • /
    • 2006
  • Lysozyme is an important antibacterial material, as effective food preservative. A number of lysozymes are found in nature such as egg white, where exists about 3.5% of egg proteins. In this study, carboxymethyl cation exchange chromatography has been used for separation of lysozyme. A simulation study by ASPEN was also performed for saving time and cost in chromatography purification experiments. Important parameters in experimental chromatography were sample loading amount, NaCl concentration, and pH of eluent. Simulation results were successfully fitted with chromatograms from experiments with change of parameters mentioned above.

Development of a Multi-Physics Model of Polymer Electrolyte Membrane Fuel Cell Using Aspen Custom Modeler (Aspen Custom Modeler를 이용한 고분자전해질 연료전지 다중 물리 모델 개발)

  • SON, HYEYOUNG;HAN, JAESU;YU, SANGSEOK
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.32 no.6
    • /
    • pp.489-496
    • /
    • 2021
  • The performandce of polymer electrolyte membrane fuel cell depends on the effective management of heat and product water by the electrochemical reaction. This study is designed to investigate the parametric change of heat management along the channel of polymer electrolyte membrane. The model was developed by an aspen custom modeler that it can solve differential equation with distretization model. The model can simulate water transport through the membrane electrolyte that is coupled with heat generation. In order to verify the model, it is compared with the experimental data. The water transport behavior is then evaluated with the simulation model.

Simulation of IgY(Immunoglobulin Yolk) Purification by SMB(Simulated Moving Bed) (SMB(Simulated Moving Bed)를 이용한 IgY(Immunoglobulin Yolk) 분리의 전산모사)

  • Song, Sung-Moon;Kim, In-Ho
    • Korean Chemical Engineering Research
    • /
    • v.49 no.6
    • /
    • pp.798-803
    • /
    • 2011
  • IgY(Immunoglobulin Yolk) is a specific antibody in egg yolk, and it protects human body from virus and antigen. There are a lot of egg yolk components such as lipoprotein and protein. To separate IgY, HPLC(High Performance Liquid Chromatography) and precipitation were used in a batch mode and SMB(Simulated Moving Bed) was adopted for continuous purification of yolk proteins. IgY and other proteins in yolk were separated by using three-zone SMB chromatography. Before performing SMB experiments, batch chromatography and PIM(pulse input method) were performed to find operation parameters and adsorption isotherms. The results of batch chromatography were compared with simulated results using Aspen chromatography. To find the most suitable separation condition in SMB chromatography, simulations in $m_2$-$m_3$ plane on the triangle theory were carried out. $m_2$ = 0.18, $m_3$ = 1.0 and ${\Delta}$t = 419 s are the best conditions for the highest purity of IgY. With this operating parameters(flow rate in three zone and switching time), the purity of raffinate results in 98.39% from Aspen chromatography simulation. Most of the simulation reached steadystate within second recycle.