DOI QR코드

DOI QR Code

The Reduced Steam Consumptions in the Evaporation Process Using a Vapor Recompression

증기 재압축을 활용한 증발공정에서 스팀 절감에 대한 연구

  • 노상균 (동양대학교 화공생명공학과)
  • Received : 2016.08.08
  • Accepted : 2016.08.17
  • Published : 2016.12.30

Abstract

In this study, modeling and optimization study have been performed to obtain $1,524.58kg\;h^{-1}$ of a solidified NaCl by evaporating a 21.0 wt% of NaCl aqueous solution in order to reduce the steam consumption from $3,139kg\;h^{-1}$ to $496kg\;h^{-1}$ using a two-stage evaporation and a vapor recompression processes. Aspen Plus release 8.8 at AspenTech was utilized for the modeling of two stage evaporation process and PRO/II with PROVISION release 9.4 at Schneider Electric was also used for the simulation of two-stage vapor recompression process with an inter-cooler. For the simulation of the evaporation process containing NaCl aqueous solution, Aspen Plus release 8.8 at AspenTech Inc. was utilized and for the modeling of vapor recompression process PRO/II with PROVISION release at Schneider Electric Inc. For the vapor recompression process, single stage compression and two-stage compression system was compared.

본 연구에서는 2중 효용 증발관을 이용하여 21.0 wt%의 NaCl 수용액에서 고형물의 NaCl을 $1,524.58kg\;h^{-1}$만큼 석출시키는 공정에 대해서 증기 재압축을 활용하여 스팀 소모량을 $3,139kg\;h^{-1}$에서 $496kg\;h^{-1}$로 줄이는 공정에 대한 전산모사 및 최적화 작업을 수행하였다. 디에틸렌 글리콜(diethylene glycol)을 포함한 NaCl 수용액을 농축시키기 위한 증발농축 공정의 전산모사를 위해서는 AspenTech사의 Aspen Plus V8.8을 활용하였으며, 중간에 냉각기를 가지는 증기 재압축 공정의 전산모사를 위해서는 Schneider Electric사의 PRO/II with PROVISION V9.4를 이용하였다. 증기 재압축 공정에 대해서는 1기의 압축기를 사용한 공정과 중간에 냉각기를 가지는 2단 압축 공정을 상호 비교하였다.

Keywords

References

  1. Cipollina, A., Micale, G., and Rizzuti, L., Seawater Desalination: Conventional and Renewable Energy Processes, Springer, Heidelberg, 1-16 (2009).
  2. Salunkhe, D. K., and Kadam, S. S., "Handbook of Fruit Science and Technology: Production, Composition, Storage, and Processing," New York, New York: Marcel Dekker, 1-6 (1995).
  3. Dan Laudal Christensen "Gas Dehydration," Aalborg University Esbjerg, February (2009).
  4. Chen, C.-C., Britt, H. I., Boston, J. F., and Evans, L. B., "Local Composition Model for Excess Gibbs Energy of Electrolyte Systems. Part I: Single Solvent, Single Completely Dissociated Electrolyte Systems," AIChE J., 28(4), 588-596 (1982). https://doi.org/10.1002/aic.690280410
  5. Peng, D.-Y., and Robinson, D. B., "A New Two-Constant Equation of State," Ind. Eng. Chem. Fundam., 15(1), 59-64 (1976). https://doi.org/10.1021/i160057a011
  6. Twu, C. H., Coon, J. E., and Cunningham, J. R., "A New Generalized Alpha Function for a Cubic Equation of State Part 1. Peng-Robinson Equation," Fluid Phase Equilib., 105(1), 49-59 (1995). https://doi.org/10.1016/0378-3812(94)02601-V