• Title/Summary/Keyword: ARIMA Forecasting

Search Result 227, Processing Time 0.022 seconds

Automatic order selection procedure for count time series models (계수형 시계열 모형을 위한 자동화 차수 선택 알고리즘)

  • Ji, Yunmi;Seong, Byeongchan
    • The Korean Journal of Applied Statistics
    • /
    • v.33 no.2
    • /
    • pp.147-160
    • /
    • 2020
  • In this paper, we study an algorithm that automatically determines the orders of past observations and conditional mean values that play an important role in count time series models. Based on the orders of the ARIMA model, the algorithm constitutes the order candidates group for time series generalized linear models and selects the final model based on information criterion among the combinations of the order candidates group. To evaluate the proposed algorithm, we perform small simulations and empirical analysis according to underlying models and time series as well as compare forecasting performances with the ARIMA model. The results of the comparison confirm that the time series generalized linear model offers better performance than the ARIMA model for the count time series analysis. In addition, the empirical analysis shows better performance in mid and long term forecasting than the ARIMA model.

Forecasting the Trading Volumes of Marine Transport and Ports Logistics Policy -Using Multiplicative Seasonal ARIMA Model- (해상운송의 물동량 예측과 항만물류정책 -승법 계절 ARIMA 모형을 이용하여-)

  • Kim, Chang-Beom
    • Journal of Korea Port Economic Association
    • /
    • v.23 no.1
    • /
    • pp.149-162
    • /
    • 2007
  • The purpose of this study is to forecast the marine trading volumes using multiplicative seasonal Autoregressive Integrated Moving Average(ARIMA) model. The paper proceeds by comparing the forecasting performances of the unload volumes with those of the load volumes with Box-Jenkins ARIMA model. Also, I present the predicted values based on the ARIMA model. The result shows that the trading volumes increase very slowly.

  • PDF

Forecasting of Dissolved Oxygen at Kongju Station using a Transfer Function Noise Model (전이함수잡음모형에 의한 공주지점의 용존산소 예측)

  • 류병로;조정석;한양수
    • Journal of Environmental Science International
    • /
    • v.8 no.3
    • /
    • pp.349-354
    • /
    • 1999
  • The transfer function was introduced to establish the prediction method for the DO concentration at the intaking point of Kongju Water Works System. In the mose cases we analyze a single time series without explicitly using information contained in the related time series. In many forecasting situations, other events will systematically influence the series to be forecasted(the dependent variables), and therefore, there is need to go beyond a univariate forecasting model. Thus, we must bulid a forecasting model that incorporates more than one time series and introduces explicitly the dynamic characteristics of the system. Such a model is called a multiple time series model or transfer function model. The purpose of this study is to develop the stochastic stream water quality model for the intaking station of Kongju city waterworks in Keum river system. The performance of the multiplicative ARIMA model and the transfer function noise model were examined through comparisons between the historical and generated monthly dissolved oxygen series. The result reveal that the transfer function noise model lead to the improved accuracy.

  • PDF

Forecasting daily peak load by time series model with temperature and special days effect (기온과 특수일 효과를 고려하여 시계열 모형을 활용한 일별 최대 전력 수요 예측 연구)

  • Lee, Jin Young;Kim, Sahm
    • The Korean Journal of Applied Statistics
    • /
    • v.32 no.1
    • /
    • pp.161-171
    • /
    • 2019
  • Varied methods have been researched continuously because the past as the daily maximum electricity demand expectation has been a crucial task in the nation's electrical supply and demand. Forecasting the daily peak electricity demand accurately can prepare the daily operating program about the generating unit, and contribute the reduction of the consumption of the unnecessary energy source through efficient operating facilities. This method also has the advantage that can prepare anticipatively in the reserve margin reduced problem due to the power consumption superabundant by heating and air conditioning that can estimate the daily peak load. This paper researched a model that can forecast the next day's daily peak load when considering the influence of temperature and weekday, weekend, and holidays in the Seasonal ARIMA, TBATS, Seasonal Reg-ARIMA, and NNETAR model. The results of the forecasting performance test on the model of this paper for a Seasonal Reg-ARIMA model and NNETAR model that can consider the day of the week, and temperature showed better forecasting performance than a model that cannot consider these factors. The forecasting performance of the NNETAR model that utilized the artificial neural network was most outstanding.

Water Quality Forecasting at Gongju station in Geum River using Neural Network Model (신경망 모형을 적용한 금강 공주지점의 수질예측)

  • An, Sang-Jin;Yeon, In-Seong;Han, Yang-Su;Lee, Jae-Gyeong
    • Journal of Korea Water Resources Association
    • /
    • v.34 no.6
    • /
    • pp.701-711
    • /
    • 2001
  • Forecasting of water quality variation is not an easy process due to the complicated nature of various water quality factors and their interrelationships. The objective of this study is to test the applicability of neural network models to the forecasting of the water quality at Gongju station in Geum River. This is done by forecasting monthly water qualities such as DO, BOD, and TN, and comparing with those obtained by ARIMA model. The neural network models of this study use BP(Back Propagation) algorithm for training. In order to improve the performance of the training, the models are tested in three different styles ; MANN model which uses the Moment-Adaptive learning rate method, LMNN model which uses the Levenberg-Marquardt method, and MNN model which separates the hidden layers for judgement factors from the hidden layers for water quality data. the results show that the forecasted water qualities are reasonably close to the observed data. And the MNN model shows the best results among the three models tested

  • PDF

Predictive Analysis of Traffic Accidents caused by Negligence of Safe Driving in Elderly using Seasonal ARIMA (계절 ARIMA 모형을 이용한 고령운전자의 안전운전불이행에 의한 교통사고건수 예측분석)

  • Kim, Jae-Moon;Chang, Sung-Ho;Kim, Sung-Soo
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.40 no.1
    • /
    • pp.65-78
    • /
    • 2017
  • Even though cars have a good effect on modern society, traffic accidents do not. There are traffic laws that define the regulations and aim to reduce accidents from happening; nevertheless, it is hard to determine all accident causes such as road and traffic conditions, and human related factors. If a traffic accident occurs, the traffic law classifies it as 'Negligence of Safe Driving' for cases that are not defined by specific regulations. Meanwhile, as Korea is already growing rapidly elderly population with more than 65 years, so are the number of traffic accidents caused by this group. Therefore, we studied predictive and comparative analysis of the number of traffic accidents caused by 'Negligence of Safe Driving' by dividing it into two groups : All-ages and Elderly. In this paper, we used empirical monthly data from 2007 to 2015 collected by TAAS (Traffic Accident Analysis System), identified the most suitable ARIMA forecasting model by using the four steps of the Box-Jenkins method : Identification, Estimation, Diagnostics, Forecasting. The results of this study indicate that ARIMA $(1, 1, 0)(0, 1, 1)_{12}$ is the most suitable forecasting model in the group of All-ages; and ARIMA $(0, 1, 1)(0, 1, 1)_{12}$ is the most suitable in the group of Elderly. Then, with this fitted model, we forecasted the number of traffic accidents for 2 years of both groups. There is no large fluctuation in the group of All-ages, but the group of Elderly shows a gradual increase trend. Finally, we compared two groups in terms of the forecast, suggested a countermeasure plan to reduce traffic accidents for both groups.

A Demand Forecasting for Aircraft Spare Parts using ARMIA (ARIMA를 이용한 항공기 수리부속의 수요 예측)

  • Park, Young-Jin;Jeon, Geon-Wook
    • Journal of the military operations research society of Korea
    • /
    • v.34 no.2
    • /
    • pp.79-101
    • /
    • 2008
  • This study is for improvement of repair part demand forecasting method of Republic of Korea Air Force aircraft. Recently, demand prediction methods are Weighted moving average, Linear moving average, Trend analysis, Simple exponential smoothing, Linear exponential smoothing. But these use fixed weight and moving average range. Also, NORS(Not Operationally Ready upply) is increasing. Recommended method of Box-Jenkins' ARIMA can solve problems of these method and improve estimate accuracy. To compare recent prediction method and ARIMA that use mean squared error(MSE) is reacted sensitively in change of error. ARIMA has high accuracy than existing forecasting method. If apply this method of study in other several Items, can prove demand forecast Capability.

A Study on increasing the fitness of forecasts using Dynamic Model (동적 모형에 의한 예측치의 정도 향상에 관한 연구)

  • 윤석환;윤상원;신용백
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.19 no.40
    • /
    • pp.1-14
    • /
    • 1996
  • We develop a dynamic demand forecasting model compared to regression analysis model and AutoRegressive Integrated Moving Average(ARIMA) model. The dynamic model can apply to the current dynamic data to forecasts through introducing state equation. A multiple regression model and ARIMA model using given data are designed via the model analysis. The forecasting fitness evaluation between the designed models and the dynamic model is compared with the criterion of sum of squared error.

  • PDF

A Case Study on Crime Prediction using Time Series Models (시계열 모형을 이용한 범죄예측 사례연구)

  • Joo, Il-Yeob
    • Korean Security Journal
    • /
    • no.30
    • /
    • pp.139-169
    • /
    • 2012
  • The purpose of this study is to contribute to establishing the scientific policing policies through deriving the time series models that can forecast the occurrence of major crimes such as murder, robbery, burglary, rape, violence and identifying the occurrence of major crimes using the models. In order to achieve this purpose, there were performed the statistical methods such as Generation of Time Series Model(C) for identifying the forecasting models of time series, Generation of Time Series Model(C) and Sequential Chart of Time Series(N) for identifying the accuracy of the forecasting models of time series on the monthly incidence of major crimes from 2002 to 2010 using IBM PASW(SPSS) 19.0. The following is the result of the study. First, murder, robbery, rape, theft and violence crime's forecasting models of time series are Simple Season, Winters Multiplicative, ARIMA(0,1,1)(0,1,1), ARIMA(1,1,0 )(0,1,1) and Simple Season. Second, it is possible to forecast the short-term's occurrence of major crimes such as murder, robbery, burglary, rape, violence using the forecasting models of time series. Based on the result of this study, we have to suggest various forecasting models of time series continuously, and have to concern the long-term forecasting models of time series which is based on the quarterly, yearly incidence of major crimes.

  • PDF

Demand Forecasting for Developing Drug Inventory Control Model in a University Hospital (한 종합병원 약품 재고관리를 위한 수요예측(需要豫測))

  • Sohn, Myong-Sei
    • Journal of Preventive Medicine and Public Health
    • /
    • v.16 no.1
    • /
    • pp.113-120
    • /
    • 1983
  • The main objective of this case study is to develop demand forecasting model for durg inventory control in a university hospital. This study is based on the pertinent records during the period of January 1975 to August 1981 in the pharmacy and stock departments of the hospital. Through the analysis of the above records the author made some major findings as follows: 1. In A.B.C. classification, the biggest demand (A class) consists of 9 items which include 6 items of antibiotics. 2. Demand forecasting level of an index or discrepancy in A class drug compared with real demand for 6 months is average 30.4% by X-11 Arima method and 84.6% by Winter's method respectively. 3. After the correcting ty the number of bed, demand forecasting of drug compared with real demand for 6 months is average 23.1% by X-11 Arima method and 46.6% by Winter's method respectively.

  • PDF