내열성 Trehalose synthase를 생산하는 초고온성 균주 HJ6은 일본 Arima 온천수에서 분리하였다. 세포의 길이는 $2{\sim}4\;um$, 직경 0.4 um의 간균으로 생육최적 pH와 온도는 각각 6.5와 $80^{\circ}C$이였다. 분리된 균주의 16s rRNA 염기서열을 분석하고 계통학적으로 분류한 결과, HJ6 균주는 Thermus thermophilus에 속하는 것으로 동정되었다. PCR법을 이용하여 trehalose synthase(TS) 유전자를 클로닝하고 염기서열을 분석한 결과, ORF는 2,898개의 뉴클레오타이드로 구성되고 915개의 아미노산을 암호화하였다. 아마노산 서열을 바탕으로 상동성을 분석한 결과, Thermus caldophilus GK24 유래 TS와 99%, Meiothermus ruber 유래 TS와 83%의 identity를 나타내었다. 이 유전자를 온도감수성 프로모터를 포함하는 pJLA503 벡터를 이용하며 대장군에서 발현하고 정제하여 약 110 kDa 단백질을 얻을 수 있었다. 정제된 효소는 트레할로스 전환활성에 대한 최적 pH가 7.5이고, 최적온도는 $80^{\circ}C$이며, 활성의 반감기는 $90^{\circ}C$에서 40분으로 확인되어 높은 내열성을 가지는 것으로 확인되었다. 본 효소의 트레할로스 최대 전환율은 기질농도 500mM에서 55.7%를 나타내었고, 기질 농도가 증가함에 따라 더불어 증가하였기 때문에 본 효소의 트레할로스 전환율을 기질농도에 의존적인 것으로 생각되었다.
전용회선은 데이터 전송에 있어서 연결된 두 지역을 독점적으로 사용하는 구조이기 때문에 안정된 품질수준과 보안성이 확보되어 교환회선의 급격한 증가에도 불구하고 기업 내부에서는 지속적으로 많이 사용하는 회선 방식이다. 하지만 비용이 상대적으로 고가이기 때문에 기업 내 네트워크 운영자의 중요한 역할 중의 하나는 네트워크 전용회선의 자원을 적절히 배치하고 활용하여 최적의 상태를 유지하는 것이 중요한 요소이다. 즉, 비즈니스 서비스 요구 사항을 적절히 지원하기 위해서는 데이터 전송 관점에서 전용회선의 대역폭 자원에 대한 적절한 관리가 필수적이며 전용회선 사용량을 적절히 예측하고 관리하는 것이 핵심 요소가 된다. 이에 본 연구에서는 기업 네트워크에서 사용하는 전용회선의 실제 사용률 데이터를 기반으로 다양한 예측 모형을 적용하고 성능을 평가하였다. 일반적으로 통계적인 방법으로 많이 사용하는 평활화 기법 및 ARIMA 모형과 요즘 많은 연구가 되고 있는 인공신경망에 기반한 딥러닝의 대표적인 모형들을 적용하여 각각의 예측에 대한 성능을 측정하고 비교하였다. 또한, 실험결과에 기초하여 전용회선 자원의 효과적인 운영 관점에서 각 모형이 예측에 대하여 좋은 성능을 내기 위하여 고려해야 할 사항을 제안하였다.
부동산의 시장 참여자들에게 부동산 가격에 대한 방향성을 예측하는 것은 의사결정에 있어서 매우 중요하다. 이를 위해 주로 회귀분석, ARIMA, VAR 등의 방법론을 사용하는데 이는 불특정 변수에 의해서 변동하는 자산의 가치를 예측하는데 한계점을 갖는다. 때문에 본 연구에서는 이를 보완하기 위해서 인공신경망 기법을 이용해 부동산 시장에서 유동성이 풍부한 서울 아파트 가격 추이를 예측하고자 한다. 인공신경망 학습을 위해서 총 12개의 거시 및 미시적 변수를 나눠 학습 모형을 설계하는데 거시적 요인은 CASE1, 미시적 요인은 CASE2 그리고 두 요인을 조합해서 요인을 구성한 CASE3 으로 나눠서 실험한다. 그 결과 CASE1 과 CASE2 는 약 2년 동안 87.5%의 예측을 보이고 CASE3은 95.8%의 예측성과를 보인다. 본 연구는 아파트 가격에 영향을 주는 다양한 요인들을 거시적 및 미시적으로 구분하여 정의하고 미래의 아파트 가격의 방향성을 예측하는데 인공신경망 기법을 제안하고 그 실효성을 분석했다. 따라서 최근 발전하고 있는 학습 기법이 부동산 분야에 다양한 관점으로 적용되어 시장 참여자들의 효율적인 의사결정을 할 수 있기를 기대한다.
스마트그리드 환경하에서 ICT 기술의 발달로 AMI 기기를 통해 가정의 실시간 전력사용량을 수집할 수 있게 됨에 따라 이러한 자료들을 활용하여 보다 더 정확한 가정용 전력사용량 예측을 할 수 있게 되었다. 본 논문에서는 1시간 단위 가정용 전력사용량 자료를 바탕으로 ARIMA, TBATS, NNAR 모형을 사용하여 전력수요를 예측하는 모형을 연구하였는데, 기존과 달리 가구 전체 사용량을 한 번에 예측하는 것이 아닌 유사한 전력사용패턴을 나타내는 가구들을 군집하여 군집별로 예측 모형을 수립하고 각 모형별 예측치를 합산하여 예상 전력사용량을 산출하였다. 특히 전력사용량 자료는 전형적인 시계얼 자료로서 군집분석 방법으로 시계열에 적절한 방법을 선택하였으며 본 논문에서는 동적타임워핑(dynamic time warping)과 Periodogram 기반의 방법을 사용하였다. 연구 결과 사용량이 유사한 가구들을 군집하여 전력사용량을 예측하는 것이 한 번에 예측하는 것보다 예측 성능이 더 우수한 것으로 나타났으며 예측 모형 중에서는 여름철의 경우 NNAR 모형이, 겨울철의 경우 TBATS 모형의 성능이 가장 좋았으며 군집분석 방법은 군집 간 패턴의 차이가 명확히 나타난 동적타임워핑 방법을 사용했을 때 예측 성능의 향상이 가장 많았다.
건설 프로젝트는 기획부터 완공까지 공사비 예측, 확인, 그리고 정산 단계로 이루어진다. 건설원자재 평균 가격은 변동성을 지닌다. 하지만 건설 프로젝트의 자재비 산정은 계획단계 시점의 시세를 반영하여 결정되기 때문에, 시공단계에서 자재가 투입될 시점의 시세 변동에 따라 예상한 가격과 차이가 날 수 있다. 건설 산업은 건설원자재 가격 변동으로 인한 수요예측 실패, 프로젝트 비용변경으로 인한 사용자 비용 증가, 예측 체계성 부족으로 인한 손실이 발생한다. 이에 따라 건설원자재 가격 예측의 정확도 개선이 필요하다. 본 연구는 Data Refactor 기법의 개선을 통해 건설원자재 가격 예측 및 적용성 검증을 목적으로 한다. 건설원자재의 가격 예측의 정확도를 높이기 위하여 기존의 데이터 리팩토 간의 저·고빈도의 분류 및 ARIMAX 활용법을 빈도 위주 및 ARIMA 기법 활용으로 개선하여 건설원자재 목재, 시멘트 등 6개 품목의 단기(미래 3개월), 중기(미래 6개월), 장기(미래 12개월) 가격을 예측하였다. 분석한 결과 개선된 Data Refactor 기법을 기반으로 한 예측값이 오차는 줄었고 변동성은 확장되었다. 따라서, 본 연구에서 제안된 Data Refactor 기법을 통해 건설원자재 가격을 더 정확하게 예측하여 예산을 효과적으로 관리할 수 있을 것으로 기대된다.
진해만은 우리나라 남해 연안의 주요 어장으로서, 여전히 전체 수산생산량에서 적지 않은 기여를 창출하고 있다. 그러나, 수십 년간 산업개발과 고수온과 같은 환경변화로 인하여 진해만의 해양생태계는 과거와 달라지고 있다. 본 연구는 2005년부터 2022년까지 진해만 연안 5개 시군구의 수산생산량, 폐기량, 평균영양단계 및 어업균형지수를 분석하였으며, ARIMA 모델을 이용하여 2027년까지 단기적인 변동 추세를 함께 관찰하였다. 그 결과, 고성지역은 2027년까지 지속적으로 수산생산량이 감소할 것으로 예측되었다. 통영지역은 이매패류의 부산물 처리가 필요한 것으로 평가된다. 해양생태계 지표의 경우, 통영지역에서는 대형 어류 생산 비중이 회복되고, 어업균형지수가 0 이상을 나타내어 해양생태계 구조가 안정적인 것으로 나타났다. 마지막으로 IPCC의 기후변화 시나리오에 따라 2060년까지 진해만의 부어성 어종 6종의 생산량 변동 추이를 비교하였으며, 2020년대 초반 2만 ton 부근까지 감소했던 생산량은 2020년대와 2040년대에 4만 ton 부근 가까이 회복한 후, 2060년까지 점진적인 감소 경향을 나타내는 것으로 예측되었다.
본 연구는 지역별로 과거 30년간의 월 강수량 데이터를 활용하여 강수량 예측의 정확성을 높이고자 하였다. 통계적 모형(ARIMA, SARIMA)과 딥러닝 모형(LSTM, GBM)을 사용하여 강릉, 광주, 대구, 대전, 부산, 서울, 제주 그리고 춘천 지역에서 1983년부터 2012년까지의 월 강수량 데이터를 학습하고 이를 바탕으로 2013년부터 2022년까지 10년간 월 강수량을 예측하였다. 예측 결과, 대부분 모형에서 강수량의 추세는 정확하게 예측했으나, 실제 강수량보다 과소 예측하는 경향을 보였다. 이러한 문제점을 해결하고자 지역별, 계절별 적합한 모델을 선정하였다. 강릉, 광주, 대구, 대전, 부산, 서울, 제주 그리고 춘천에는 LSTM 모형이 적합한 결과를 보였다. 계절별로 나누어 예측력을 비교하면, SARIMA 모형은 강릉, 광주, 대구, 대전, 서울 그리고 춘천 지역에서 겨울철에 특히 적합한 예측 성능을 나타냈다. 또한, LSTM 모형은 강수가 집중된 여름철에 다른 모형에 비해 높은 성능을 보였다. 결론적으로, 지역별 및 계절별 강수 패턴을 면밀하게 분석하고 이에 기반한 적합한 예측 모형을 선택하는 것은 강수량 예측의 정확도를 높이는 데 결정적인 역할을 한다.
Communications for Statistical Applications and Methods
/
제19권3호
/
pp.507-516
/
2012
시계열의 상관구조가 시점에 의존하며 주기적인 상관성을 보이는 계절성 시계열 자료에 대한 시계열 모형들이 비교 분석된다. 주기적 자기회귀이동평균 모형을 소개하고, 실증분석으로 주기적 상관성을 지닌 스위스 Arosa 지방의 성층권 오존 월별 시계열에 계층형 모형인 주기적 자기회귀이동평균 모형과 계절 누적자기회귀이동 평균 모형의 적합을 통하여 주기적 자기회귀이동평균 모형의 우월성을 비교한다.
In this study, we examined the structural analysis of water demand fluctuation for water distribution control of water supply network. In order to analyze for the length of stationary time series, we calculate autocorrelation coefficient of each case equally divided data size. As a result, it was found that, with the data size of around three months, any case could be used as stationary time series. we analyze cross-correlation coefficient between the daily water consumption's data and primary influence factors. As a result, we have decided to use weather conditions and maximum temperature as natural primary factors and holidays as a social factor. Applying the multiple ARIMA model, we obtains an effective model to describe the daily water demand prediction. From the forecasting result, even though we forecast water distribution quantity of the following year, estimated values well express the flctuations of measurements. Thus, the suitability of the model for practical use can be confirmed. When this model is used for practical water distribution control, water distribution quantity for the following day should be found by inputting maximum temperature and weather conditions obtained from weather forecast, and water purification plants and service reservoirs should be operated based on this information while operation of pumps and valves should be set up. Consequently, we will be able to devise a rational water management system.
비교적 주기성이 강하고 경향성이 존재하는 유량시계열에 있어서 예측 및 모의발생을 위한 모형개발이 시도되었다. 원시계열로부터 구한 차분시계열(Diffe renced time series)이 정상공분산을 갖는다는 가정하여 모형의 고정화(Model Intentification)가 실시되었으며, 정상가정을 정당화하기 위해 잔차(Residual)의 통계적 성질을 검토하였다. 또한, 동정된 모형의 예측 정도를 노이기 위하여 예측오차의 분산이 최소가 되도록 추계적 제어(Stochastic Control)된 모형을 예측에 사용하였다. 한국주요하천유역의 유량자료에 대한 모형의 고정과 예측결과로부터, 차분연산자(Difference operator)는 경향과 주기를 제거하는데 좋은 방법이 됨이 판단되었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.