Browse > Article

Gene Cloning and Expression of Trehalose Synthase from Thermus thermophilus HJ6  

Kim, Hyun-Jung (Department of Biomaterial Control (Brain korea 21 program), Dong-Eui University)
Kim, Han-Woo (Research Institute of Cell Engineering, National Institute of Advanced Industrial Science and Technology (AISI))
Jeon, Sung-Jong (Department of Biomaterial Control (Brain korea 21 program), Dong-Eui University)
Publication Information
Microbiology and Biotechnology Letters / v.36, no.3, 2008 , pp. 182-188 More about this Journal
Abstract
A hyperthermophilic bacteria (strain HJ6) was isolated from a hot springs located in the Arima-cho, Hyogo, Japan. The cells were long-rod type ($2-4{\mu}m$), about $0.4{\mu}m$ in diameter. The pH and temperature for optimal growth were 6.5 and $80^{\circ}C$, respectively. Phylogenetic analysis based on the 16S rDNA sequence and biochemical studies indicated that HJ6 belonged to the genus Thermus thermophilus (Tt). The gene encoding the Trehalose synthase (TS) was cloned and sequenced. The open reading frame (ORF) of the TtTS gene was composed of 2,898 nucleotides and encoded a protein (975 amino acids) with a predicted molecular weight of 110.56 kDa. The deduced amino acid sequence of TtTS showed 99% and 83% identities to the Thermus caldophilus TS and Meiothermus ruber TS, respectively. TtTS gene was expressed in Escherichia coli cells, and the recombinant protein was purified to homogeneity. The optimal temperature and pH for Trehalose synthase activity were found to be $80^{\circ}C$ and 7.5, respectively. The half-life of heat inactivation was about 40 min at $90^{\circ}C$. The maximum trehalose conversion rate of maltose into trehalose by the enzyme increased as the substrate concentration increased, and reached 55.7% at the maltose concentration of 500 mM, implying that the enzyme conversion was dependent of the substrate concentration.
Keywords
Trehalose; trehalose synthase; Thermus thermophilus; thermostability;
Citations & Related Records

Times Cited By SCOPUS : 2
연도 인용수 순위
1 Elbein, A. D. 2003. New insights on trehalose: a multifunctional molecule. Glycobiology. 13: 17-27   DOI   ScienceOn
2 Paiva, C. L. A. and A. D. Panek. 1999. Biotechnological applications of the disaccharide trehalose. Biotechnol. Ann. Rev. 2: 293-314
3 Rahman, R. N., S. Fujiwara, M. Takagi, and T. Imanaka. 1998. Sequence analysis of glutamate dehydrogenase (GDH) from the hyperthermophilic archaeon Pyrococcus sp. KOD1 and comparison of the enzymatic characteristics of native and recombinant GDHs. Mol. Gen. Genet. 257: 338-347   DOI
4 Saito, K., H. Yamazaki, Y. Ohnishi, S. Fujimoto, E. Takahashi, and S. Horinouchi. 1998. Production of trehalose synthase from a basidiomycete, Grifola frondosa, in Escherichia coli. Appl. Microbiol. Biotechnol. 50: 193-198   DOI
5 Nishimoto, T., M. Nakano, T. Nakano, H. Chaen, S. Fukuda, T. Sugimoto, M. Kurimoto, and Y. Tsujisaka. 1996. Purification and peoperties of a novel enzyme, trehalose synthase from Pimelobacter sp. R48. Biosci. Biotech. Biochem. 60: 640-644   DOI   ScienceOn
6 Crowe, J. H. and L. M. Crowe. 1984. Preservation of membranes in anhydrobiotic organism: The role of trehalose. Science. 223: 701-703   DOI   ScienceOn
7 Miyazaki, J., K. Miyagawa, and Y. Sugitama. 1993. November, Process for production of trehalose, Japan Kokai Tokyo Koho (Japan patent) JP05292986
8 Shin, H. J., S. H. Koh, D. S. Lee, and S. Y. Lee. 1998. Trehalose synthase from maltose by a thermostable trehalose synthase from Thermus caldophilus. Biotechnol. Lett. 20: 757-761   DOI   ScienceOn
9 Kim, D. J., M. Morikawa, M. Takagi, and T. Imanaka. 1995. Gene cloning and characterization of thermostable peptidyl prolyl cis-trans isomerase (PPIase) from Bacillus stearothermophilus. J. Ferment. Bioeng. 79: 87-94   DOI   ScienceOn
10 Chung, A. P., F. A. Rainey, M. Valente, M. F. Nobre, and M. S. da Costa. 2000. Thermus igniterrae sp. nov. and Thermus antranikianii sp. nov., two new species from Iceland. Int. J. Syst. Evol. Microbiol. 50: 209-217   DOI   PUBMED   ScienceOn
11 Nishimoto, T., T. Nakano, H. Chaen, S. Fukuda, T. Sugimoto, M. Kurimoto, and Y. Tsujisaka. 1996. Purification and characterization of a thermostable trehalose synthase from Thermus aquaticus. Biosci. Biotech. Biochem. 60: 835-839   DOI
12 Kobayashi, K., M. Kettoku, Y. Miura, M. Kato, T. Komeda, and A. Iwarmatsu. 1996. Production of trehalose by new trehalose-producing enzymes from archaea. J. Appl. Glycosci. 43: 203-211
13 Gadd, G. M., K. Chalmers, and R. H. Reed. 1987. The role of trehalose in dehydration resistance of Saccharomyces cerevisiae. FEMS Microbiol. Lett. 48: 249-254   DOI
14 Nishimoto, T., M. Nakano, S. Ikegami, H. Chaen, S. Fukuda, T. Sugimoto, M. Kurimoto, and Y. Tsujisaka. 1995. Existence of a novel enzyme converting maltose into trehalose. Biosci. Biotech. Biochem. 59: 2189-2190   DOI
15 Cho, Y. J., S. H. Koh, D. S. Lee, and H. J. Shin. 2003. Optimization of production of trehalose from maltose using recombinant trehalose synthase from Thermus caldophilus GK24. K. J. Biotechnol. Bioeng. 18: 8-13
16 Tabuchi, A., T. Mandai, T. Shibuta, M. Kubota, S. Fukuda, T. Sugimoto, and M. Kurimoto. 1995. Formation of trehalose from starch by novel enzymes, J. Appl. Glycosci. 42: 401-406
17 Santos, M. A., R. A. D. Williams, and M. S. da Costa. 1989. Numerical taxonomy of Thermus isolated from hot springs in Portigal. Syst. Appl. Microbiol. 12: 310-315   DOI
18 Elbein, A. D. 1974. The metabolism of $\alpha$, $\alpha$-trehalose. Adv. Carbohydr. Chem. Biochem. 30: 227-256   DOI
19 Yoshida, M., N. Nakamura, and K. Horikoshii. 1998. Production of trehalose by a dual enzyme system of immobilized maltose phosphorylase and trehalose phosphorylase, Enzyme Microb. Technol. 22: 71-75   DOI   ScienceOn
20 Chaen, H., K. Maruta, T. Nakada, T. Nishimoto, T. Shibuya, M. Kubota, S. Fukuda, T. Sugimoto, M. Kurimoto, and Y. Tsujisaka. 1996. Two novel pathways for the enzymatic synthesis of trehalose in bacteria. J. Appl. Glycosci. 43: 213-221
21 Schauder, B., H. Blocker, R. Frank, and J. E. McCarthy. 1987. Inducible expression vectors incorporating the Escherichia coli atpE translational initiation region. Gene. 52: 279-283   DOI   ScienceOn
22 Klimacek, M., C. Eis, and B. Nidetzky. 1999. Continuous production of $\alpha$, $\alpha$-trehalose by immobilized fungal trehalose phosphorylase. Biotechnol. Tech. 13: 243-248   DOI   ScienceOn
23 Coutinho, C. C., E. Bernardes, D. Felix, and A. D. Panek. 1988. Trehalose as cryoprotectant for preservation of yeast strains. J. Biotechnol. 7: 23-32   DOI   ScienceOn
24 Nihaus, F., C. Bertoldo, M. Kahler, and G. Antranikian. 1999. Extremophiles as a source of novel enzymes for industrial application. Appl. Microbiol. Biotechnol. 51: 711-729   DOI