• Title/Summary/Keyword: AR Model

Search Result 826, Processing Time 0.025 seconds

Dynamic Manipulation of a Virtual Object in Marker-less AR system Based on Both Human Hands

  • Chun, Jun-Chul;Lee, Byung-Sung
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.4 no.4
    • /
    • pp.618-632
    • /
    • 2010
  • This paper presents a novel approach to control the augmented reality (AR) objects robustly in a marker-less AR system by fingertip tracking and hand pattern recognition. It is known that one of the promising ways to develop a marker-less AR system is using human's body such as hand or face for replacing traditional fiducial markers. This paper introduces a real-time method to manipulate the overlaid virtual objects dynamically in a marker-less AR system using both hands with a single camera. The left bare hand is considered as a virtual marker in the marker-less AR system and the right hand is used as a hand mouse. To build the marker-less system, we utilize a skin-color model for hand shape detection and curvature-based fingertip detection from an input video image. Using the detected fingertips the camera pose are estimated to overlay virtual objects on the hand coordinate system. In order to manipulate the virtual objects rendered on the marker-less AR system dynamically, a vision-based hand control interface, which exploits the fingertip tracking for the movement of the objects and pattern matching for the hand command initiation, is developed. From the experiments, we can prove that the proposed and developed system can control the objects dynamically in a convenient fashion.

Short-Term Water Demand Forecasting Algorithm Using AR Model and MLP (AR모델과 MLP를 이용한 단기 물 수요 예측 알고리즘 개발)

  • Choi, Gee-Seon;Yu, Chool;Jin, Ryuk-Min;Yu, Seong-Keun;Chun, Myung-Geun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.19 no.5
    • /
    • pp.713-719
    • /
    • 2009
  • In this paper, we develope a water demand forecasting algorithm using AR(Auto-regressive) and MLP(Multi-layer perceptron). To show effectiveness of the proposed method, we analyzed characteristics of time-series data collected in "A" purification plant at Jeon-Buk province during 2007-2008, and then performed the proposed method with various input factors selected through various analyses. As noted in experimental results, the performance of three types model such as multi-regressive, AR(Auto-regressive), and AR+MLP(Auto-regressive + Multi-layer perceptron) show 5.1%, 3.8%, and 3.6% with respect to MAPE(Mean Absolute Percentage Error), respectively. Thus, it is noted that the proposed method can be used to predict short-term water demand for the efficient operation of a water purification plant.

Children's Education Application Design Using AR Technology (AR기술을 활용한 어린이 교육 어플리케이션 디자인)

  • Chung, HaeKyung;Ko, JangHyok
    • Journal of the Semiconductor & Display Technology
    • /
    • v.20 no.4
    • /
    • pp.23-28
    • /
    • 2021
  • Augmented reality is a technique for combining virtual images into real life by showing information of virtual 3D objects on top of a real-world environment (Azuma et al., 2001). This study is an augmented reality-based educational content delivery device that receives user input that selects either a preset object or a photographed object for augmented reality-based training; It includes a three-dimensional design generation unit that generates a stereoscopic model of the augmented reality environment from an object, a three-dimensional view of the scene, a disassembly process of the developing road from a three-dimensional model, and a content control unit provided by the user terminal by generating educational content including a three-dimensional model, a scene chart, a scene, a decomposition process, and a coupling process to build a coupling process from the scene to the three-dimensional model in an augmented reality environment. The next study provides a variety of educational content so that children can use AR technology as well as shapes to improve learning effectiveness. We also believe that studies are needed to quantitatively measure the efficacy of which educational content is more effective when utilizing AR technology.

The forecasting evaluation of the high-order mixed frequency time series model to the marine industry (고차원 혼합주기 시계열모형의 해운경기변동 예측력 검정)

  • KIM, Hyun-sok
    • The Journal of shipping and logistics
    • /
    • v.35 no.1
    • /
    • pp.93-109
    • /
    • 2019
  • This study applied the statistically significant factors to the short-run model in the existing nonlinear long-run equilibrium relation analysis for the forecasting of maritime economy using the mixed cycle model. The most common univariate AR(1) model and out-of-sample forecasting are compared with the root mean squared forecasting error from the mixed-frequency model, and the prediction power of the mixed-frequency approach is confirmed to be better than the AR(1) model. The empirical results from the analysis suggest that the new approach of high-level mixed frequency model is a useful for forecasting marine industry. It is consistent that the inclusion of more information, such as higher frequency, in the analysis of long-run equilibrium framework is likely to improve the forecasting power of short-run models in multivariate time series analysis.

A Synthetic Generation of Streamflows by ARMA(1, 1) Multiseason Model (ARMA(1, 1) 다계절모형에 의한 하천유량의 모의발생)

  • 윤용남;전시영
    • Water for future
    • /
    • v.18 no.1
    • /
    • pp.75-83
    • /
    • 1985
  • The applicability of ARMA(1, 1) multiseason model, which is in the beginning stage of active researches in the field of synthetic generation is evaluated with the streamflow data at the Nakdong stage gauging station on the main stem of the Nakdong River. The method of parameter estimation for the modelis reviewed and the statistical analysis of the generated seasonal streamflows such as corrlogram analysis and the computation of moments is made. The results obtained by ARMA(1, 1) multiseason model are compared with the historical streamflow data and also with those by two other multiseason models, namely, Thomas-Fiering model and Matalas AR(1) multiseason model. The seasonal streamflows grnerated by three multiseason models were annually summed up to form respective annual flow series whose statistics were compared with those of the annual flow series generated by three annual models, namely, AR(1), Matalas AR(1), and ARMA(1, 1) annual models. The possibility of ARMA(1, 1) multiseason model for the simultaneous generation of seasonal and annual streamflows is also evaluated.

  • PDF

Model selection for unstable AR process via the adaptive LASSO (비정상 자기회귀모형에서의 벌점화 추정 기법에 대한 연구)

  • Na, Okyoung
    • The Korean Journal of Applied Statistics
    • /
    • v.32 no.6
    • /
    • pp.909-922
    • /
    • 2019
  • In this paper, we study the adaptive least absolute shrinkage and selection operator (LASSO) for the unstable autoregressive (AR) model. To identify the existence of the unit root, we apply the adaptive LASSO to the augmented Dickey-Fuller regression model, not the original AR model. We illustrate our method with simulations and a real data analysis. Simulation results show that the adaptive LASSO obtained by minimizing the Bayesian information criterion selects the order of the autoregressive model as well as the degree of differencing with high accuracy.

A Study on the Tourism Combining Demand Forecasting Models for the Tourism in Korea (관광 수요를 위한 결합 예측 모형에 대한 연구)

  • Son, H.G.;Ha, M.H.;Kim, S.
    • The Korean Journal of Applied Statistics
    • /
    • v.25 no.2
    • /
    • pp.251-259
    • /
    • 2012
  • This paper applies forecasting models such as ARIMA, Holt-Winters and AR-GARCH models to analyze daily tourism data in Korea. To evaluate the performance of the models, we need single and double seasonal models that compare the RMSE and SE for a better accuracy of the forecasting models based on Armstrong (2001).

A Formula for Computing the Autocorrelations of the AR Process

  • Cho, Sung-Ho
    • The Journal of the Acoustical Society of Korea
    • /
    • v.15 no.2E
    • /
    • pp.4-7
    • /
    • 1996
  • In this paper, we propose a formula to compute the exact autocorrelations of the autoregressive (AR) process. For an arbitrary value of N, we first review the Yule-Walker equation and some basic properties of the AR model. We then modify the Yule-Walker equation to construct a new system of N+1 linear equations that can be used to solve for the N+1 autocorrelation coefficients for lags 0, 1, …, N, provided that the AR parameters of order N and the power of the white noise of the AR process are given.

  • PDF

A Study on Order Decision of AR Model for Median Frequency in Fatiguing EMG (근피로 중앙주파수를 위한 AR모델의 차수결정에 관한 연구)

  • Cho, Eun Seuk;Cha, Sam;Lee, Ki Young
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.3 no.1
    • /
    • pp.8-12
    • /
    • 2010
  • In this paper, we studied on AR model order decision for extraction of EMG median frequency by t-test and ANOVA and comparison of median frequency. And we extracted well-known parameters such as zero crossing rate(ZCR), low band energy(Band) and median frequency(MDF) from surface electromyogram (EMG). And we compared to evaluate themselves as measures for fatigue.

  • PDF

Stationary Bootstrapping for the Nonparametric AR-ARCH Model

  • Shin, Dong Wan;Hwang, Eunju
    • Communications for Statistical Applications and Methods
    • /
    • v.22 no.5
    • /
    • pp.463-473
    • /
    • 2015
  • We consider a nonparametric AR(1) model with nonparametric ARCH(1) errors. In order to estimate the unknown function of the ARCH part, we apply the stationary bootstrap procedure, which is characterized by geometrically distributed random length of bootstrap blocks and has the advantage of capturing the dependence structure of the original data. The proposed method is composed of four steps: the first step estimates the AR part by a typical kernel smoothing to calculate AR residuals, the second step estimates the ARCH part via the Nadaraya-Watson kernel from the AR residuals to compute ARCH residuals, the third step applies the stationary bootstrap procedure to the ARCH residuals, and the fourth step defines the stationary bootstrapped Nadaraya-Watson estimator for the ARCH function with the stationary bootstrapped residuals. We prove the asymptotic validity of the stationary bootstrap estimator for the unknown ARCH function by showing the same limiting distribution as the Nadaraya-Watson estimator in the second step.