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ABSTRACT

In this paper, we propose a formula to compute the exact autocorrelations of the autoregressive (AR) process. For an 
arbitrary value of N, we first review the Yule-Walker equation and some basic properties of the AR model. We then modify 
the Yule-Walker equation to construct a new system of N + l linear equations that can be used to solve for the N 4-1 
autocorrelation coefficients for lags 0, 1,…JV, provided that the AR parameters of order N and the power of the white 

noise of the AR process are given.

I. Introduction

The AR model has been widely used as a valuable tool 

to fit a variety of practical data in several different 

applications, such as geophysics, parametric spectral esti

mation, and speech processing. One of the reasons why 

the AR model becomes so popular in many different 

fields is that the parameters of the AR model can be 

computed in a very efficient manner by solving the 

well-known Yule-Walker equation [l]-[4].

Sometimes, however, for given AR parameters, it is 

necessary to compute the autocorrelation coefficients of 

the output data of the AR filter. For example, consider 

the adaptive predictor model in which the AR process 

output is used as the input to the predictor. We suppose 

that the popular least mean square (LMS) algorithm [5], 

[6] is employed for the adaptation proccess. To ensure the 

mean and mean-squared convergence of the LMS algorithm, 

we must select the convergence parameter (or adaptive 

step-size) in the coefficient update equation properly 

according to certain conditions. For this, we have to 

know the eigenvalues of the input autocorrelation matrix, 

which in turn requires knowledge of the autocorrelation 

values. Since these autocorrelations are usually one of the 

unknowns, it is very difficult to find the exact eigenvalues 

of the matrix. In practice, we often estimate the auto

correlations by means of the time-average formula, but 

they are still only estimates.

In this paper, for an arbitrary value of N、we first 

review the Yule-Walker equation and basic properties of 

the AR system, for which a set of TV +1 simultaneous linear 

equations is derived. Here, the N +1 autocorrelation 

values of the AR process for lags 0, are used as 

the known quantities and the AR parameters of order N 

and the input white noise power as the unknowns. We 

then modify the Yule-Walker equation to construct a set 

of new N +1 linear equations where, this time, the AR 

parameters of order N and the input power of the AR 

process are the known values and the TV +1 autocorrelations 

for lags 0, 1,…JV are the unknowns.

II. Preliminaries

The AR process of order N can be expressed as

N
x(w) = ^(w) + E a-i (1)

i= I

where £3) and x(n) denote the input and output 

processes of the AR filter of order N、respectively, and % 

Mi M N、denotes the z-th AR parameter. The transfer 

function H(z) of the AR process is

H(z) =------- -- -------- . (2)N
1 _£ aiz~i

i = i

We assume that zz/s take on all real values and that £3) 

is zero-mean, wide-sense stationary, and white with vari

ance 风.

Let rx (k) denote the autocorrelation of x (n) defined as

rx(k) = E{x(n) x(n-k)}, 0M&M7V, (3)

where £{•} denotes the statistic지 expectation of {•}. 

Now, substituting (1) in ⑶ yields
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= (n) + L ai r(«-z)j x(n-k) }

N 
-E{^(n) + E % 七QD

i = i
N

=« S Q) + £ % rx Q - i) (4)

for k-0, 1,…JV, where

(1 if 为=0
SQ)= „ ⑸

[0 otherwise.

From (4), the variance of the white noise process ^(n) 

that is used to excite the AR model, can be expressed as

N
(T? = rr(0) - E % rx O'). (6)
' i = i

The following matrix equation is readily obtained:

R으고 P, (7)

where

彼 0) rx{\) …rx(N-\)

n 彼1) e(°)…n(N — 2)
R= e、

: : : (8)

rx(N~ 1) rx (N — 2)… rx(0)

彼1)

n⑵
P =
:5 (9)

如V)

and

a\

“2
咀：. (10)

aN

Equation (7) is referred to as the Yule-Walker equation. 

The Yule-Walker equation is, in fact, of exactly the same 

as the normal equation for the forward predictor [7]. 

Moreover, equation (6) which represents the vanance of 

the input process to the AR filter, is also of the same 

mathematical form as the minimum mean-squared for

ward prediction error. For an AR process for which the 

model order N is known, we thus can state that the tap 

weights of a forward predictor take on the same value as 

the corresponding AR parameters once the predictor is 

optimized in the mean-squared sense.

We can combine (6) and (7) into a single augmented 
matrix relation as

rx(0) Pr 1 T 1
p R J 흐 di)o

where 0 indicates the Mby-l null vector, and [-]r represents 

the transpose of [•].

One of the most celebrating things here is the existence 

of an efficient and elegant way for computing the AR 

parameters %'s and the input white noise power，ie, 

the Levinson-Durbin algorithm [3], [4]. This method is 

recursive in nature and makes particular use of the 

Toeplitz structure of the matrix R. It also has been widely 

employed in problems of finding partial correlation 

(PARCOR) coefficients or reflection coefficients of the 

lattice structure [8].

HI. Formulation of a New Linear System

For given and a/s, 1 5 M N, the problem is now to 

construct the TV +1 linear equations by modifying (6) and 

⑺ to solve for rx(k), 0 M 冷 M M

Define the normalized autocorrelation coefficient 尸;(&) 

as

rKk) 그号쁘m GMkMN,
(12)

so that 尸£(0)= 1 : Using (12) in (6) leads to

N
rx (0) = 0； + 兀r(0) E 务 0).

' i= I
(13)

Hence

侦)=——-——.

1 尸知) 
i= I

Usign (12) once again in (7), we get

R 흐 = 1匕

1 r；(D …r'ANT)

已⑴ 1 - r'ANf
K = .

匕(N-T) r^N-2) - 1 

(14)

(15)

(16)

and
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如)

p，_兄⑵

" (17)

rxW

We are now ready to modify equations (15) to con

struct, together with (13), the new 丿V+l simultaneous 

linear equations, for which %'s of order N and tr^are the 

known quantities and rQ)'s for lage 0, 1,…JV are the 

unknowns. The construction procedure of this new sys

tem is straightforward, but nonsystematic and tedious 

particularly when the order N becomes large. Here, we 

just give the final simple result.

We will。이y consider the modification of the system 

given in (15), since one of the unknowns, rx(0), can be 

immediately evaluated using (14) after having the modi

fied system solved. To compute the remaining N 

unknowns, the new system should be of a form

AP =-a, (18)

where A is the N-by-N matrix whose elements consist of 

some functions of %'s Any subroutine for linear systems 

can now be invoked to solve (18). Once (18) is solved for 

P‘，we use the resultant r^k) values in (12) to get rx(k) 

for 1, 2,…，丿V.

Let A:-y denotes 나le (/, j)-th element of the matrix A. 

For any value of N, it can be shown that

A” 그%+丿 +-<5(z —7), (19)

in which

%+/ = 0 whenever zT 丿W TV + 1, (20)

%T = 0 whenever i — j <> 0, (21)

and

whenever i 丰 j. (22)

For example, when TV =6, it follows from (19)-(22) that

◎ 2 — 1 “3 “4 «5 “6 0
a ] + £如一 1 4 0 0

A = a2 4- “4 “l + «5 度6 — 1 0 0 0
.(23)S + -1 0 0

a4-ia6 -1 0

“5 “4 “3 a-i -1

Equations (12), (14), and (18), along with (19)-(20), col- 

lecliv이y the new system.

For the AR process described in (1) to be convergent, 

the AR parameters %'s sho니d be given in such a way 

that all the poles of the transfer function H(z) lie strictly 

inside the unit circle in the Z-plane. Mo re ver, since %'s 

are assumed to be all real values, the locations of the 

poles are on the real axis or in complex conjugate pairs. 

Under these conditions, it is easy to conjecture that the 

matrix A is nonsing니ar for any value of N so that the 

solution vector P‘ always exists and is unique. Any rigor

ous proof, however, has not yet been made.

IV. Conclusion

In this paper, a method of computing the exact values 

for the autocorrelation function of the AR process is 

proposed when the AR parameters and the power of the 

white noise process are 응iven. For an arbitrary value of 

N, we first review the Yule-Walker equation and some 

basic properties of the AR model. We then modify the 

Yule-Walker equation to construct a new linear system 

consisting of N +1 linear equations, where the AR 

parameters of order N and the input white noise power of 

the AR process are used as the known values, and the N 

+ 1 autocorrelation coefTicients for lags 0, I,---,N as the 

unknowns. The matrix in this new linear system is 

observed to be always nonsingular if the AR parameters 

are selected in such a way that the AR process is stable.

In the future, efforts should be made in finding 

efficient ways of solving the system, if any. It will be also 

interesting to explore some properties of the matrix in the 

system in conjuction with 나le Jury's stability test |9],
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