Background: In this study, we analyze the performance of the Acute Physiology and Chronic Health Evaluation (APACHE) II, APACHE IV, Simplified Acute Physiology Score (SAPS) 3, and Mortality Probability Model $(MPM)_0$ III in order to determine which system best implements data related to the severity of medical intensive care unit (ICU) patients. Methods: The present study was a retrospective investigation analyzing the discrimination and calibration of APACHE II, APACHE IV, SAPS 3, and $MPM_0$ III when used to evaluate medical ICU patients. Data were collected for 788 patients admitted to the ICU from January 1, 2015 to December 31, 2015. All patients were aged 18 years or older with ICU stays of at least 24 hours. The discrimination abilities of the three systems were evaluated using c-statistics, while calibration was evaluated by the Hosmer-Lemeshow test. A severity correction model was created using logistics regression analysis. Results: For the APACHE IV, SAPS 3, $MPM_0$ III, and APACHE II systems, the area under the receiver operating characteristic curves was 0.745 for APACHE IV, resulting in the highest discrimination among all four scoring systems. The value was 0.729 for APACHE II, 0.700 for SAP 3, and 0.670 for $MPM_0$ III. All severity scoring systems showed good calibrations: APACHE II (chi-square, 12.540; P=0.129), APACHE IV (chi-square, 6.959; P=0.541), SAPS 3 (chi-square, 9.290; P=0.318), and $MPM_0$ III (chi-square, 11.128; P=0.133). Conclusions: APACHE IV provided the best discrimination and calibration abilities and was useful for quality assessment and predicting mortality in medical ICU patients.
연구배경 : 중환자의 예후를 계량화 하려는 채점 체계 중 APACHE III 체계는 중환자실 제1병일 접수는 물론 일 갱선점수도 중환자의 예후를 예측할 수 있는 것으로 알려져 왔다. 평균 재원일이 외국과 비교하여 3-4배의 차이가 나는 점을 감안하면, 일 갱신점수는 예후를 판정하는 지표로서 경제적 효율성이 떨어진다. 이에 제7병일(평균 중간 재원일)의 APACHE III 점수의 임상적 유용성에 관해 알아 보고자 하였다. 방 법 : 1997년 6월부터 1998년 4월까지 한양대학교 구리병원 내파계 중환자실에 입원한 241명의 제1병일과 7병일 APACHE III 점수를 조사하여 생존군과 비생존군 간의 차이를 분석하였다. 결 과 : 전체 환자 수는 241명으로 이 중 사망자가 65명으로 26.6%의 사망률을 나타내었으며 평균 재원일 수는 $10.3{\pm}13.8$일이였다. 제1병일 APACHE III 점수는 $59.7{\pm}30.9$, 제7병일 APACHE III 점수는, $37.9{\pm}27.7$점이였다. 제1병일과 제7병일 APACHE III 점수는 생존군과 비생존군에서 $49.9{\pm}23.8$, $86.3{\pm}32.3$점, $30.1{\pm}18.5$, $81.1{\pm}30.4$점으로 유의한 차이를 보였다(P<0.0001, P<0.0001). APACHE III 점수가 사망률에 미치는 영향을 알아보기 위하여 로지스틱 회귀분석을 시행한 결과 제1병일과 제7병영일의 비차비(odds ratio)는 각각 1.0507, 1.0779로 유의한 결과를 나타내었다(P<0.0001). 결 론 : 이상의 결과로서 제1병일 APACHE III 점수 뿐 아니라 제7병일 점수 또한 사망률 예측과 입원 후 치료 경과에 의해 변화된 예후를 평가하기에 유용한 척도임을 알 수 있었다. 평균 중간 재원일인 제7병일 APACHE III 점수는 일 갱선점수가 경제적으로 물적, 인적 비용이 많이 드는 상황에서 비용효과면에서 임상의에게 도움을 줄 수 있다고 판단된다.
Purpose: The purpose of this study was to identify characteristics of patients who were recipients of decision-making DNR, to describe the situations of DNR, and to analyze the APACHE III and MOF scores. Method: Data collection was conducted through reviews of medical records of 51 patients and through interviews with families of patients who were decision-makers for DNR at C university K Hospital located in Seoul from April to September 2002. Results: The men's APACHE III and MOF scores were higher than the women's and the non cancer patients were higher than cancer patients. Some 80.4% of DNR orders was by communication, while 11.8% of consents were written. Each of APACHE III and MOF scores of patients in the intensive care unit was higher than the patients in general ward at both points of admission and decision-making of DNR. APACHE III and MOF scores positively correlated statistically with each other. Conclusions: The findings of this study suggest that APACHE III and MOF scores be useful for decision-making of DNR as a tool measuring severity.
데이터의 양은 기술의 발전으로 크게 증가하였고 이를 처리하기 위해 다양한 빅데이터 처리 플랫폼이 등장하고 있다. 이 중 가장 널리 사용되고 있는 플랫폼이 Apache 소프트웨어 재단에서 개발한 하둡이며, 하둡은 IoT 분야에도 사용된다. 그러나 기존에 하둡 기반 IoT 센서 데이터 수집 분석 환경은 하둡의 코어 프로젝트인 HDFS의 Small File로 인한 네임노드의 과부하 문제와 임포트된 데이터의 업데이트나 삭제가 불가능하다는 문제가 있다. 본 논문에서는 Apache Kudu와 Impala를 활용해 Lambda Architecture를 설계한다. 제안하는 구조는 IoT 센서 데이터를 Cold-Data와 Hot-Data로 분류해 각 성격에 맞는 스토리지에 저장하고 배치를 통해 생성된 배치뷰와 Apache Kudu와 Impala를 통해 생성된 실시간뷰를 활용해 기존 하둡 기반 IoT 센서 데이터 수집 분석 환경의 문제를 해결하고 사용자가 분석된 데이터에 접근하는 시간을 단축한다.
In this paper, we design and implement a distributed, moving objects management system for processing locations and sensor data from smart black boxes. The proposed system is designed and implemented based on Apache Kafka, Apache Spark & Spark Streaming, Hbase, HDFS. Apache Kafka is used to collect the data from smart black boxes and queries from users. Received location data from smart black boxes and queries from users becomes input of Apache Spark Streaming. Apache Spark Streaming preprocesses the input data for indexing. Recent location data and indexes are stored in-memory managed by Apache Spark. Old data and indexes are flushed into HBase later. We perform experiments to show the throughput of the index manager. Finally, we describe the implementation detail in Scala function level.
Objectives : To evaluate the predictive validity of three scoring systems; the acute physiology and chronic health evaluation(APACHE) III, simplified acute physiology score(SAPS) II, and mortality probability model(MPM) II systems in critically ill patients. Methods : A concurrent and retrospective study conducted by collecting data on consecutive patients admitted to the intensive care unit(ICU) including surgical, medical and coronary care unit between January 1, 2004, and March 31, 2004. Data were collected on 348 patients consecutively admitted to the ICU(aged 16 years or older, no transfer, ICU stay at least 8 hours). Three models were analyzed using logistic regression. Discrimination was assessed using receiver operating characteristic(ROC) curves, sensitivity, specificity, and correct classification rate. Calibration was assessed using the Lemeshow-Hosmer goodness of fit H-statistic. Results : For the APACHE III, SAPS II and MPM II systems, the area under the receiver operating characterist ic(ROC) curves were 0.981, 0.978, and 0.941 respectively. With a predicted risk of 0.5, the sensitivities for the APACHE III, SAPS II, and MPM II systems were 81.1, 79.2 and 71.7%, the specificities 98.3, 98.6, and 98.3%, and the correct classification rates 95.7, 95.7, and 94.3%, respectively. The SAPS II and APACHE III systems showed good calibrations(chi-squared H=2.5838 p=0.9577 for SAPS II, and chi-squared H=4.3761 p=0.8217 for APACHE III). Conclusions : The APACHE III and SAPS II systems have excellent powers of mortality prediction, and calibration, and can be useful tools for the quality assessment of intensive care units(ICUs).
본 논문은 웹 애플리케이션의 증가로 인해 소프트웨어 내 보안 취약점을 이용한 사이버 공격이 증가하고 있다. CSRF(Cross-Site Request Forgery) 공격은 특히 웹 사용자와 개발자에게 심각한 위협으로, 사전에 예방해야하는 공격이다. CSRF는 사용자의 동의 없이 비정상적인 요청을 통해 공격을 수행하는 기법으로, 이러한 공격으로부터 웹 애플리케이션을 보호하기 위한 방법은 매우 중요하다. 본 논문에서는 Spring Security와 Apache Shiro 두 프레임워크를 통해 CSRF 방어에 대한 성능을 비교 분석하고 검증하여, 효과적으로 적용 가능한 프레임워크를 제안한다. 실험 결과, 두 프레임워크 모두 CSRF 공격 방어에 성공하였으나, Spring Security는 평균 2.55초로 Apache Shiro의 5.1초보다 더 빠르게 요청을 처리하였다. 이러한 성능 차이는 내부 처리 방식과 최적화 수준의 차이에서 비롯되었으며, 시스템 자원 사용 측면에서는 두 프레임워크 간에 차이가 없었다. 따라서 높은 성능과 효율적인 요청 처리가 요구되는 환경에서는 Spring Security가 더 적합하며, Apache Shiro는 개선이 필요하다. 이 결과는 웹 애플리케이션의 보안 아키텍처 설계 시 중요한 참고 자료로 활용되기를 기대한다.
본 논문에서는, 맵-리듀스 모델 기반에서 나이브 베이스 알고리즘으로 학습과 추론을 수행하는 방안에 대해 소개하고자 한다. 이를 위해 Apache Mahout를 이용하여 분산 나이브 베이스 (Distributed Naive Bayes) 학습 알고리즘을 University of California, Irvine (UCI)의 벤치마크 데이터 집합에 적용하였다. 실험 결과, Apache Mahout의 분산 나이브 베이스 학습 알고리즘은 일반적인 WEKA의 나이브 베이스 학습 알고리즘과 그 성능면에서 큰 차이가 없음을 알 수 있었다. 이러한 결과는, 향후 빅 데이터 환경에서 Apache Mahout와 같은 맵-리듀스 모델 기반 시스템이 기계 학습에 큰 기여를 할 수 있음을 나타내는 것이다.
Using the APCHE III tool, this study was about the factors related to the death of ICU-patients. From 1999. 12. 1 to 2000. 9. 30, the 284 patients admitted to ICU at P university who were over 15 years of age were selected for the subjets. The data was analyzed through SPSS WIN program for frequency, percentile, $x^2$-test, t-test and logistic regression. The results are summarized as follows: 1) Of the 284 patients, 88died. The mortality is 31.0 percent. The average APACHE III point was $48.62{\pm}32.32$. The average point of non-survivors was higher than that of survivors. 2) There are the significant difference between APACHE III marks and mortality. The mortality rate were over 50 percent 60 points of the mark. When the marks were over 100 points, the mortality were over 90 percent. Below 40 points, the mortality was below 10 percent. Among the variables in the APACHE III, the most significant variables in explaining death were neurologic abnormalities, pulse, $PaO_2$/$AaDO_2$, creatinine, sodium, glucose, chronic health state and age. According to the variables, the models explained the 42.43 percent of the variance in patient's death. In conclusion, the APACHE III tool can be used to predict the progress of ICU patients, and can also be used for the selection of patients for ICU admission/discharge criteria.
실시간으로 빠르게 발생하는 대용량 데이터를 다루기 위해 Apache Storm, Apache Spark 등 실시간 데이터 스트림 처리 기술에 대한 연구가 활발하다. 대부분의 실시간 처리 기술들은 단독으로 사용하기에 어려움이 있으며, 데이터 스트림의 입출력을 위해 메시징 시스템과 함께 사용하는 것이 일반적이다. Apache Kafka는 대표적인 분산 메시징 시스템으로써, 실시간으로 발생하는 대용량의 로그 데이터를 전달하는데 특화된 시스템이다. 현재 Kafka를 위한 다양한 성능 모니터링 도구들이 존재한다. 이러한 모니터링 도구들은 Kafka에서 처리되는 데이터의 양 이외에도 유입 데이터의 크기, 수집 속도, 처리 속도 등 다양한 데이터들을 관찰할 수 있다. 본 논문은 Kafka에서 제공하는 도구와 오픈 소스로 제공되는 여러 개의 도구들을 비교하여, 향후 Kafka의 로드 쉐딩에 대한 연구에 적용할 수 있는 최적의 모니터링 도구를 선별하고자 한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.