• Title/Summary/Keyword: AOPs

Search Result 53, Processing Time 0.037 seconds

A Systematic Review of Toxicological Studies to Identify the Association between Environmental Diseases and Environmental Factors (환경성질환과 환경유해인자의 연관성을 규명하기 위한 독성 연구 고찰)

  • Ka, Yujin;Ji, Kyunghee
    • Journal of Environmental Health Sciences
    • /
    • v.47 no.6
    • /
    • pp.505-512
    • /
    • 2021
  • Background: The occurrence of environmental disease is known to be associated with chronic exposure to toxic chemicals, including waterborne contaminants, air/indoor pollutants, asbestos, ingredients in humidifier disinfectants, etc. Objectives: In this study, we reviewed toxicological studies related to environmental disease as defined by the Environmental Health Act in Korea and toxic chemicals. We also suggested a direction for future toxicological research necessary for the prevention and management of environmental disease. Methods: Trends in previous studies related to environmental disease were investigated through PubMed and Web of Science. A detailed review was provided on toxicological studies related to the humidifier disinfectants. We identified adverse outcome pathways (AOPs) that can be linked to the induction of environmental diseases, and proposed a chemical screening system that uses AOP, chemical toxicity big data, and deep learning models to select chemicals that induce environmental disease. Results: Research on chemical toxicity is increasing every year, but there is a limitation to revealing a clear causal relationship between exposure to chemicals and the occurrence of environmental disease. It is necessary to develop various exposure- and effect-biomarkers related to disease occurrence and to conduct toxicokinetic studies. A novel chemical screening system that uses AOP and chemical toxicity big data could be useful for selecting chemicals that cause environmental diseases. Conclusions: From a toxicological point of view, developing AOP related to environmental diseases and a deep learning-based chemical screening system will contribute to the prevention of environmental diseases in advance.

Enhanced sewage effluent treatment with oxidation and adsorption technologies for micropollutant control: current status and implications (미량오염물질 관리를 위한 산화 및 흡착 기반 하수 방류수 강화처리 기술의 연구 동향 및 시사점)

  • Choi, Sangki;Lee, Woongbae;Kim, Young Mo;Hong, Seok Won;Son, Heejong;Lee, Yunho
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.36 no.2
    • /
    • pp.59-79
    • /
    • 2022
  • Conventional wastewater treatment plants (WWTPs) do not fully remove micropollutants. Enhanced treatment of sewage effluents is being considered or implemented in some countries to minimize the discharge of problematic micropollutants from WWTPs. Representative enhanced sewage treatment technologies for micropollutant removal were reviewed, including their current status of research and development. Advanced oxidation processes (AOPs) such as ozonation and UV/H2O2 and adsorption processes using powdered (PAC) and granular activated carbon (GAC) were mainly discussed with focusing on process principles for the micropollutant removal, effect of process operation and water matrix factors, and technical and economic feasibility. Pilot- and full-scale studies have shown that ozonation, PAC, and GAC can achieve significant elimination of various micropollutants at economically feasible costs(0.16-0.29 €/m3). Considering the current status of domestic WWTPs, ozonation and PAC were found to be the most feasible options for the enhanced sewage effluent treatment. Although ozonation and PAC are all mature technologies, a range of technical aspects should be considered for their successful application, such as energy consumption, CO2 emission, byproduct or waste generation, and ease of system construction/operation/maintenance. More feasibility studies considering domestic wastewater characteristics and WWTP conditions are required to apply ozonation or PAC/GAC adsorption process to enhance sewage effluent treatment in Korea.

Consistency check algorithm for validation and re-diagnosis to improve the accuracy of abnormality diagnosis in nuclear power plants

  • Kim, Geunhee;Kim, Jae Min;Shin, Ji Hyeon;Lee, Seung Jun
    • Nuclear Engineering and Technology
    • /
    • v.54 no.10
    • /
    • pp.3620-3630
    • /
    • 2022
  • The diagnosis of abnormalities in a nuclear power plant is essential to maintain power plant safety. When an abnormal event occurs, the operator diagnoses the event and selects the appropriate abnormal operating procedures and sub-procedures to implement the necessary measures. To support this, abnormality diagnosis systems using data-driven methods such as artificial neural networks and convolutional neural networks have been developed. However, data-driven models cannot always guarantee an accurate diagnosis because they cannot simulate all possible abnormal events. Therefore, abnormality diagnosis systems should be able to detect their own potential misdiagnosis. This paper proposes a rulebased diagnostic validation algorithm using a previously developed two-stage diagnosis model in abnormal situations. We analyzed the diagnostic results of the sub-procedure stage when the first diagnostic results were inaccurate and derived a rule to filter the inconsistent sub-procedure diagnostic results, which may be inaccurate diagnoses. In a case study, two abnormality diagnosis models were built using gated recurrent units and long short-term memory cells, and consistency checks on the diagnostic results from both models were performed to detect any inconsistencies. Based on this, a re-diagnosis was performed to select the label of the second-best value in the first diagnosis, after which the diagnosis accuracy increased. That is, the model proposed in this study made it possible to detect diagnostic failures by the developed consistency check of the sub-procedure diagnostic results. The consistency check process has the advantage that the operator can review the results and increase the diagnosis success rate by performing additional re-diagnoses. The developed model is expected to have increased applicability as an operator support system in terms of selecting the appropriate AOPs and sub-procedures with re-diagnosis, thereby further increasing abnormal event diagnostic accuracy.

Trend of In Silico Prediction Research Using Adverse Outcome Pathway (독성발현경로(Adverse Outcome Pathway)를 활용한 In Silico 예측기술 연구동향 분석)

  • Sujin Lee;Jongseo Park;Sunmi Kim;Myungwon Seo
    • Journal of Environmental Health Sciences
    • /
    • v.50 no.2
    • /
    • pp.113-124
    • /
    • 2024
  • Background: The increasing need to minimize animal testing has sparked interest in alternative methods with more humane, cost-effective, and time-saving attributes. In particular, in silico-based computational toxicology is gaining prominence. Adverse outcome pathway (AOP) is a biological map depicting toxicological mechanisms, composed of molecular initiating events (MIEs), key events (KEs), and adverse outcomes (AOs). To understand toxicological mechanisms, predictive models are essential for AOP components in computational toxicology, including molecular structures. Objectives: This study reviewed the literature and investigated previous research cases related to AOP and in silico methodologies. We describe the results obtained from the analysis, including predictive techniques and approaches that can be used for future in silico-based alternative methods to animal testing using AOP. Methods: We analyzed in silico methods and databases used in the literature to identify trends in research on in silico prediction models. Results: We reviewed 26 studies related to AOP and in silico methodologies. The ToxCast/Tox21 database was commonly used for toxicity studies, and MIE was the most frequently used predictive factor among the AOP components. Machine learning was most widely used among prediction techniques, and various in silico methods, such as deep learning, molecular docking, and molecular dynamics, were also utilized. Conclusions: We analyzed the current research trends regarding in silico-based alternative methods for animal testing using AOPs. Developing predictive techniques that reflect toxicological mechanisms will be essential to replace animal testing with in silico methods. In the future, since the applicability of various predictive techniques is increasing, it will be necessary to continue monitoring the trend of predictive techniques and in silico-based approaches.

Degradation of Microcystin-LR, Taste and Odor, and Natural Organic Matter by UV-LED Based Advanced Oxidation Processes in Synthetic and Natural Water Source (UV-LED기반 고도산화공정을 이용한 수중 마이크로시스틴-LR, 이취미 물질, 자연유기물 분해)

  • Yang, Boram;Park, Jeong-Ann;Nam, Hye-Lim;Jung, Sung-Mok;Choi, Jae-Woo;Park, Hee-Deung;Lee, Sang-Hyup
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.39 no.5
    • /
    • pp.246-254
    • /
    • 2017
  • Microcystin-LR (MC-LR) is one of most abundant microcystins, and is derived from blue-green algae bloom. Advanced oxidation processes (AOPs) are effective process when high concentrations of MC-LR are released into a drinking water treatment system from surface water. In particular, UV-based AOPs such as UV, $UV/H_2O_2$, $UV/O_3$ and $UV/TiO_2$ have been studied for the removal of MC-LR. In this study, UV-LED was applied for the degradation of MC-LR because UV lamps have demonstrated some weaknesses, such as frequent replacements; that generate mercury waste and high heat loss. Degradation efficiencies of the MC-LR (initial conc. = $100{\mu}g/L$) were 30% and 95.9% using LED-L (280 nm, $0.024mW/cm^2$) and LED-H (280 nm, $2.18mW/cm^2$), respectively. Aromatic compounds of natural organic matter changed to aliphatic compounds under the LED-H irradiation by LC-OCD analysis. For application to raw water, the Nak-dong River was sampled during summer when blue-green algae were heavy bloom in 2016. The concentration of extracellular and total MC-LR, geosmin and 2-MIB slightly decreased by increasing the LED-L irradiation; however, the removal of MC-LR by UV-LED (${\lambda}=280nm$) was insufficient. Thus, advanced UV-LED technology or the addition of oxidants with UV-LED is required to obtain better degradation efficiency of MC-LR.

Development of Practical Advanced Oxidation Treatment System for Decontamination of Soil and Groundwater Contaminated with Chlorinated Solvent (TCE, PCE) : Phase I (염소계 화합물(TCE, PCE)로 오염된 토양 및 지하수 처리를 위한 실용적 고도산화처리시스템 개발 (I))

  • Sohn, Seok-Gyu;Lee, Jong-Yeol;Jung, Jae-Sung;Lee, Hong-Kyun;Kong, Sung-Ho
    • Journal of Soil and Groundwater Environment
    • /
    • v.12 no.5
    • /
    • pp.105-114
    • /
    • 2007
  • The most advanced oxidation processes (AOPs) are based on reactivity of strong and non-selective oxidants such as hydroxyl radical (${\cdot}OH$). Decomposition of typical DNAPL chlorinated compounds (TCE, PCE) using various advanced oxidation processes ($UV/Fe^{3+}$-chelating agent/$H_2O_2$ process, $UV/H_2O_2$ process) was approached to develop appropriate methods treating chlorinated compound (TCE, PCE) for further field application. $UV/H_2O_2$ oxidation system was most efficient for degrading TCE and PCE at neutral pH and the system could remove 99.92% of TCE after 150 min reaction time at pH 6($[H_2O_2]$ = 147 mM, UVdose = 17.4 kwh/L) and degrade 99.99% of PCE within 120 min ($[H_2O_2]$ = 29.4 mM, UVdose = 52.2 kwh/L). Whereas, $UV/Fe^{3+}$-chelating agent/$H_2O_2$ system removed TCE and PCE ca. > 90% (UVdose = 34.8 kwh/L, $[Fe^{3+}]$ = 0.1 mM, [Oxalate] = 0.6 mM, $[H_2O_2]$ = 147 mM) and 98% after 6hrs (UVdose = 17.4 kwh/L, $[Fe^{3+}]$ = 0.1 mM, [Oxalate] = 0.6 mM, $[H_2O_2]$ = 29.4 mM), respectively. We improved the reproduction system with addition of UV light to modified Fenton reaction by increasing reduction rate of $Fe^{3+}$ to $Fe^{2+}$. We expect that the system save the treatment time and improve the removal efficiencies. Moreover, we expect the activity of low molecular organic compounds such as acetate or oxalate be effective for maintaining pH condition as neutral. This oxidation system could be an economical, environmental friendly, and practical treatment process since the organic compounds and iron minerals exist in nature soil conditions.

A Study on Dissolve and Remove Analysis of Organic Chemicals Using a Mixed Method of Advanced Oxidation and Micro Filtering - Water Drinking Point - (고도산화와 정밀여과의 혼성공법을 이용한 유기화학물질의 분해 및 제거분석에 관한 연구 - 먹는 물을 중심으로 -)

  • An, Tai-Young;Jun, Sang-Ho;Ahn, Tae-Seok;Han, Mi-Ae;Hur, Jang-Hyun;Pak, Mi-Young
    • Membrane Journal
    • /
    • v.17 no.2
    • /
    • pp.99-111
    • /
    • 2007
  • It is impossible to remove toxic organic substances that are recognized as a cancer caused suspicious element in drinking water using the conventional water purification method. This study introduces groundwater into a reaction chamber as an effective amount of water to process this water using a mixed method of AOP oxidation and M/F membrane and purifies it as a desirable level by artificially mixing such toxic substances in order to effectively process the water. Based on this fact, this study configures an optimal operation condition. The VOCs existed in toxic substances was investigated as a term of phenol and toluene, and agricultural chemicals were also investigated as a term of parathion, diazinon and carbaryl. The experiment applied in this study was performed using a single and composite soolution. In the operation condition applied to fully dissolve and remove such substances, the amount of $H_2O_2$ injected in the process was 150 mL of a fixed quantity, the value of pH was configured as $5.5{\sim}6.0$, the temperature was controlled as a range of $12{\sim}16^{\circ}C$, the dissolved amount of ozone was applied more than 5.0 mg/L, the reaction time was determined as an optimal condition, such as $30{\sim}40$ minutes, and the segregation membrane in the same reactor was determined for acquire water drinking of large quantity using a pore size of $0.45{\mu}m$ M/F membrane.

Comparative Studies Of the $UV/H_2O_2,\;UV/TiO_2/H_2O_2$ and Photo-Fenton Oxidation for Degradation of Citric Acid ($UV/H_2O_2,\;UV/TiO_2/H_2O_2$, Photo-Fenton 산화방법에 의한 Citric Acid의 분해효율 비교)

  • Seo, Min-Hye;Cho, Soon-Haing;Ha, Dong-Yun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.4
    • /
    • pp.429-437
    • /
    • 2006
  • To establish the efficient treatment technology of chemical cleaning wastewater from power plant, several AOPs($UV/H_2O_2,\;UV/TiO_2/H_2O_2$, Photo-Fenton oxidation) were investigated. Treatment efficiencies and the electrical energy requirements based on the EE/O parameter(the electrical energy, required per order of pollutant removal in $1m^3$ wastewater) were evaluated. TOC removal efficiencies of $UV/H_2O_2,\;UV/TiO_2/H_2O_2$, Photo-Fenton oxidation at the optimum conditions were 95.5%, 92.3%, 91.5%, respectively. The electrical energy requirements of $UV/H_2O_2,\;UV/TiO_2/H_2O_2$, Photo-Fenton oxidation were $11.26kWh/m^3,\;3.85kWh/m^3,\;0.799kWh/m^3$, respectively. From these results, it could be concluded that all of the three oxidation processes were effective for the degradation of citric acid. Considering the treatment efficiency and economical aspect, photo-Fenton oxidation was the most efficient treatment process among the three processes tested.

The estimation of Hydroxyl radical generation rate in Ozonation (오존산화공정에서 수산화라디칼(OH.)의 생성속도 측정)

  • 권충일;공성호;배성렬
    • Journal of Soil and Groundwater Environment
    • /
    • v.6 no.1
    • /
    • pp.3-12
    • /
    • 2001
  • During ozonation process, the hydroxyl radical generation rates were measured under different experimental conditions (ozone feed rate, nitrobenzene concentration, hydroxyl radical scavenger, pH, HO$_2$O$_2$/O$_3$ etc.) Nitrobenzene could be decomposed by hydroxyl radical rather than ozone only and nitrobenzene decomposition rate was expressed with functions of ozone and nitrobenzene concentration. The rate was decreased as the hydroxyl radical scavenger concentration was increased, and all results were followed pseudo first-order reaction. Using a competitive method, hydroxyl radical generation rate was measured with probe compound and scavenger. It was proportional to ozone concentration, and 0.24mo1 of hydroxyl radical was produced with 1mol of ozone. Under different pH conditions, hydroxyl radical generation rates were measured (pH 10.2 (0.91Ms$^{-1}$ ) > pH 7.3 (0.72Ms$^{-1}$ ) > pH 5.6 (0.67Ms$^{-1}$ ) > pH 3.4 (0.63Ms$^{-1}$ )) showing higher generation rate at high pH values. Addition of hydrogen peroxide promoted the generation rate of hydroxyl radical. Considering the results of pH experiments and addition of hydrogen peroxide experiments, the hydroxyl radical generation rate was 1.6 times higher in hydrogen peroxide solution than in high pH solution, indicating addition of hydrogen peroxide is better promoter to produce the hydroxyl radical in ozonation. These results could be applied to AOPs to remediate the contaminated wastewater and groundwater.

  • PDF

Effects of Advanced Oxidation of Penicillin on Biotoxicity, Biodegradability and Subsequent Biological Treatment (고도산화공정 처리가 페니실린의 생독성, 생분해도 및 생물학적 분해에 미치는 영향)

  • Luu, Huyen Trang;Minh, Dang Nhat;Lee, Kisay
    • Applied Chemistry for Engineering
    • /
    • v.29 no.6
    • /
    • pp.690-695
    • /
    • 2018
  • Advanced oxidation processes (AOPs) composed of O3 and UV were applied to degrade penicillin (PEN). The degradation efficiency was evaluated in terms of changes in the absorbance (ABS) and total organic carbon (TOC). The combination of $O_3/H_2O_2/UV$ and $O_3/UV$ showed the best performance for the reduction of ABS (100% for 9 min) and TOC (70% for 60 min) values, although the mineralization was uncompleted under the experimental condition in this study. The change in biotoxicy was monitored with Escherichia coli susceptibility and Vibrio fischeri biofluorescence. The E. coli susceptibility was eliminated completely for 9 min by $O_3/UV$, and the toxicity to V. fischeri biofluorescence was 57% reduced by $O_3/H_2O_2/UV$. For the ultimate treatment of PEN, it is suggested that an AOP using $O_3/UV$ is followed by biological treatment, utilizing the enhanced biodegradability by the AOP. During 30 min of $O_3/UV$ treatment, the $BOD_5/COD$ ratio as an indication of biodegradability showed about 4-fold increment, compared to that of using a non-treated sample. TOC removal rate for AOP-pretreated PEN wastewater increased 55% compared to that of using the non-pretreated one through an aerobic biological treatment by Pseudomonas putida for artificial wastewater containing 20 mg/L of PEN. In conclusion, $O_3/UV$ process is recommended as a pretreatment step prior to an aerobic biological process to improve the ultimate degradation of penicillin.