• 제목/요약/키워드: ANSYS simulation

검색결과 444건 처리시간 0.033초

Analysis of transmission efficiency of the superconducting resonance coil according the materials of cooling system

  • Lee, Yu-Kyeong;Hwang, Jun-Won;Choi, Hyo-Sang
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제18권1호
    • /
    • pp.46-49
    • /
    • 2016
  • The wireless power transfer (WPT) system using a magnetic resonance was based on magnetic resonance coupling of the transmission and the receiver coils. In these system, it is important to maintain a high quality-factor (Q-factor) to increase the transmission efficiency of WPT system. Our research team used a superconducting coil to increase the Q-factor of the magnetic resonance coil in WPT system. When the superconductor is applied in these system, we confirmed that transmission efficiency of WPT system was higher than normal conductor coil through a preceding study. The efficiency of the transmission and the receiver coil is affected by the magnetic shielding effect of materials around the coils. The magnetic shielding effect is dependent on the type, thickness, frequency, distance, shape of materials. Therefore, it is necessary to study the WPT system on the basis of these conditions. In this paper, the magnetic shield properties of the cooling system were analyzed using the High-Frequency Structure Simulation (HFSS, Ansys) program. We have used the shielding materials such as plastic, aluminum and iron, etc. As a result, when we applied the fiber reinforced polymer (FRP), the transmission efficiency of WPT was not affected because electromagnetic waves went through the FRP. On the other hand, in case of a iron and aluminum, transmission efficiency was decreased because of their electromagnetic shielding effect. Based on these results, the research to improve the transmission efficiency and reliability of WPT system is continuously necessary.

로터 장착 건식 미분 분리기의 작동원리 규명 및 파라미터 연구 - II. CFD 해석 (INVESTIGATION OF THE OPERATIONAL PRINCIPLE AND PARAMETRIC STUDY ON A DRY PASTE SEPARATOR EQUIPED WITH A ROTOR -II. CFD ANALYSIS)

  • 박성욱;강양수;강상모;서용권
    • 한국전산유체공학회지
    • /
    • 제20권4호
    • /
    • pp.81-92
    • /
    • 2015
  • Construction waste mainly consists of concrete aggregates of various size. Improper handling of concrete waste would be a major environmental problem whereas its recycling would be both economically useful and environmentally friendly. Bigger concrete aggregates are crushed and converted to medium and fine particles to make them recyclable. An apparatus to separate the concrete aggregates by their size is thus needed for their effective recycling. In this work, segregation of concrete particles in air flows from a newly designed rotary separator having three stages of blades is simulated using a commercial software, ANSYS-CFX. Both 2-D and 3-D models with 360, 240 and 180 blades in each stage are considered. Fundamental mechanism of separation of particles(pase) and the effect of design parameters such as particle size, rotor speed, air flow rate etc. on the performance of the separator are investigated. Critical size of particles that can be separated by the developed separator is also presented in this work. Simulation results are overall in good agreement with data predicted from the theoretical model previously reported in the companion paper.

해양구조물용 고압 컨트롤 밸브에 대한 기초 연구 (A Fundamental Study on Offshore Structures of high pressure control valve)

  • 이치우;장성철
    • 한국생산제조학회지
    • /
    • 제19권6호
    • /
    • pp.883-888
    • /
    • 2010
  • This study have goal with conceptual design for Offshore Structures of high pressure control valve for localization. Ball valve for development accomplished with flow analysis based on provision of ANSI B16.34, ANSI B16.10, ANSI B16.25 In order to localize the Offshore Structures high pressure control valve. Numerical simulation using CFD (Computational Fluid Dynamic) in order to predict a mass flow rate and a flow coefficient form flow dynamic point of view. The working fluid assumed the glycerin (C3H8O3). The valve inlet and outlet setup a pressure boundary condition. The outlet pressure was fixed by atmospheric pressure and calculated until increasing 1bar to 10bar. CFD analysis used STAR-CCM+ which is commercial code and Governing equations were calculated by moving mesh which is rotated 90 degrees when ball valve operated opening and closing in 1 degree interval. The result shows change of mass flow rate according to opening and closing angle of valve, Flow decrease observed open valve that equal percentage flow paten which is general inclination of ball valve. Relation with flow and flow coefficient can not be proportional according to inlet pressure when compare with mass flow rate. Because flow coefficient have influence in flow and pressure difference. Namely, flow can be change even if it has same Cv value. The structural analysis used ANSYS which is a commercial code. Stress analysis result of internal pressure in valve showed lower than yield strength. This is expect to need more detail design and verification for stem and seat structure.

Dynamic analysis of offshore wind turbines

  • Zhang, Jian-Ping;Wang, Ming-Qiang;Gong, Zhen;Shi, Feng-Feng
    • Wind and Structures
    • /
    • 제31권4호
    • /
    • pp.373-380
    • /
    • 2020
  • For large-scale 5MW offshore wind turbines, the discrete equation of fluid domain and the motion equation of structural domain with geometric nonlinearity were built, the three-dimensional modeling of the blade considering fluid-structure interaction (FSI) was achieved by using Unigraphics (UG) and Geometry modules, and the numerical simulation and the analysis of the vibration characteristics for wind turbine structure under rotating effect were carried out based on ANSYS software. The results indicate that the rotating effect has an apparent effect on displacement and Von Mises stress, and the response and the distribution of displacement and Von Mises stress for the blade in direction of wingspan increase nonlinearly with the equal increase of rotational speeds. Compared with the single blade model, the blade vibration period of the whole machine model is much longer. The structural coupling effect reduces the response peak value of the blade displacement and Von Mises stress, and the increase of rotational speed enhances this coupling effect. The maximum displacement difference between two models decreases first and then increases along wingspan direction, the trend is more visible with the equal increase of rotational speed, and the boundary point with zero displacement difference moves towards the blade root. Furthermore, the Von Mises stress difference increases gradually with the increase of rotational speed and decreases nonlinearly from the blade middle to both sides. The results can provide technical reference for the safe operation and optimal design of offshore wind turbines.

양방향 축류펌프용 임펠러 블레이드의 형상최적설계 (Shape Optimization of Impeller Blades for Bidirectional Axial Flow Pump)

  • 백석흠;정원혁;강상모
    • 대한기계학회논문집B
    • /
    • 제36권12호
    • /
    • pp.1141-1150
    • /
    • 2012
  • 이 논문은 선박에서 자세 안정용 양방향 축류펌프에 대한 임펠러 블레이드의 형상최적설계를 설명한 것이다. 양방향 축류펌프용 블레이드는 대칭형 익형을 사용하므로 효율이 기존의 단방향 축류펌프보다 낮다. 이러한 양방향 축류펌프의 단점을 최소화 하고 효율을 증가시키기 위해 최적설계기법을 사용하였다. 양방향 축류펌프의 성능 개선을 위해 상용 CFD 프로그램인 ANSYS CFX v.13 을 이용하여 유동해석을 수행하였다. 직교배열표, 분산분석과 직교다항식을 이용한 대리모델기반 최적설계방법은 최적 설계변수를 결정하고 주효과를 찾는데 사용하였다. 최적설계 결과로부터, 임펠러 블레이드의 유효한 설계변수를 확인하고 이의 최적해와 설계요구조건 만족에 대한 유용성을 설명하였다.

Power Generating Characteristics of Zinc Oxide Nanorods Grown on a Flexible Substrate by a Hydrothermal Method

  • Choi, Jae-Hoon;You, Xueqiu;Kim, Chul;Park, Jung-Il;Pak, James Jung-Ho
    • Journal of Electrical Engineering and Technology
    • /
    • 제5권4호
    • /
    • pp.640-645
    • /
    • 2010
  • This paper describes the power generating property of hydrothermally grown ZnO nanorods on a flexible polyethersulfone (PES) substrate. The piezoelectric currents generated by the ZnO nanorods were measured when bending the ZnO nanorod by using I-AFM, and the measured piezoelectric currents ranged from 60 to 100 pA. When the PtIr coated tip bends a ZnO nanorod, piezoelectrical asymmetric potential is created on the nanorod surface. The Schottky barrier at the ZnO-metal interface accumulates elecntrons and then release very quickly generating the currents when the tip moves from tensile to compressed part of ZnO nanorod. These ZnO nanorods were grown almost vertically with the length of 300-500 nm and the diameter of 30-60 nm on the Ag/Ti/PES substrate at $90^{\circ}C$ for 6 hours by hydrothermal method. The metal-semiconductor interface property was evaluated by using a HP 4145B Semiconductor Parameter Analyzer and the piezoelectric effect of the ZnO nanorods were evaluated by using an I-AFM. From the measured I-V characteristics, it was observed that ZnO-Ag and ZnO-Au metal-semiconductor interfaces showed an ohmic and a Schottky contact characteristics, respectively. ANSYS finite element simulation was performed in order to understand the power generation mechanism of the ZnO nanorods under applied external stress theoretically.

광섬유 격자센서 내장형 소형 풍력발전기 날개 제작 (Manufacturing of an FBG sensor imbedded small wind turbine blade)

  • 김창환;윤진용;김현규;김관수;백인수;유능수
    • 한국태양에너지학회 논문집
    • /
    • 제32권4호
    • /
    • pp.1-8
    • /
    • 2012
  • A Fiber Bragg Grating (FBG) sensor imbedded small wind turbine blade was manufactured to experimentally investigate the feasibility to embed FBG sensors between layers of glass fiber to monitor dynamic strains of the wind turbine blade. The blade which is similar to a commercial 300 W wind turbine blade was manufactured with glass fiber as a reinforcement and epoxy resin as base material. A total of five FBG sensors including one temperature sensor were imbedded in the blade to sense mechanical strain and temperature. While manufacturing the blade, residual strain and temperature that occurred in the small wind turbine blade were monitored using the imbedded FBG sensor array. To examine the sensor performance, an impact test was carried out. The experimental results from the FBG sensors were close to those from electrical strain gages mounted on the blade root surface. The mode shapes of the blade were analyzed also using a commercial Ansys simulation with a model obtained from a three dimensional laser scanning of the blade.

해양구조물용 고압 컨트롤 밸브 수치해석 (A Numerical Analysis on High Pressure Control Valve for Offshore)

  • 이중섭;장성철;정휘원;남태희
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2008년도 하계학술발표대회 논문집
    • /
    • pp.1195-1200
    • /
    • 2008
  • This study have goal with conceptual design for Offshore Structures of high pressure control valve for localization. Ball valve for development accomplished with flow analysis based on provision of ANSI B16.34, ANSI B16.10, ANSI B16.25 In order to localize the Offshore Structures high pressure control valve. Numerical simulation using CFD(Computational Fluid Dynamic) in order to predict a mass flow rate and a flow coefficient form flow dynamic point of view. The working fluid assumed the glycerin($C_3H_8O_3$). The valve inlet and outlet setup a pressure boundary condition. The outlet pressure was fixed by atmospheric pressure and calculated until increasing 1bar to 10bar. CFD analysis used STAR-CCM+ which is commercial code and Governing equations were calculated by moving mesh which is rotated 90 degrees when ball valve operated opening and closing in 1 degree interval. The result shows change of mass flow rate according to opening and closing angle of valve. Flow decrease observed open valve that equal percentage flow paten which is general inclination of ball valve. Relation with flow and flow coefficient can not be proportional according to inlet pressure when compare with mass flow rate. Because flow coefficient have influence in flow and pressure difference. Namely, flow can be change even if it has same Cv value. The structural analysis used ANSYS which is a commercial code. Stress analysis result of internal pressure in valve showed lower than yield strength. This is expect to need more detail design and verification for stem and seat structure.

  • PDF

Damage Mechanism of Drift Ice Impact

  • Gong, Li;Wang, Zhonghui;Li, Yaxian;Jin, Chunling;Wang, Jing
    • Journal of Information Processing Systems
    • /
    • 제15권6호
    • /
    • pp.1350-1364
    • /
    • 2019
  • The ice damage occurs frequently in cold and dry region of western China in winter ice period and spring thaw period. In the drift ice condition, it is easy to form different extrusion force or impact force to damage tunnel lining, causing project failure. The failure project could not arrive the original planning and construction goal, giving rise to the water allocation pressure which influences diversion irrigation and farming production in spring. This study conducts the theoretical study on contact-impact algorithm of drift ices crashing diversion tunnel based on the symmetric penalty function in finite element theory. ANSYS/LS-DYNA is adopted as the platform to establish tunnel model and drift ice model. LS-DYNA SOLVER is used as the solver and LS-PREPOST is used to do post-processing, analyzing the damage degrees of drift ices on tunnel. Constructing physical model in the experiment to verify and reveal the impact damage mechanism of drift ices on diversion tunnel. The software simulation results and the experiment results show that tunnel lining surface will form varying degree deformation and failure when drift ices crash tunnel lining on different velocity, different plan size and different thickness of drift ice. The researches also show that there are damages of drift ice impact force on tunnel lining in the thawing period in cold and dry region. By long time water scouring, the tunnel lining surfaces are broken and falling off which breaks the strength and stability of the structure.

삼각가열에 의한 판 변형의 시뮬레이션 (Simulation of Plate Deformation by Triangle Heating Process)

  • 장창두;고대은;문성춘;서용록
    • 대한조선학회논문집
    • /
    • 제38권4호
    • /
    • pp.66-74
    • /
    • 2001
  • 선체 외판 제작을 위한 곡가공은 조선에 있어서 필수적인 공정이다. 프레스를 이용한 냉간가공과 가스토치를 이용한 열간가공이 주를 이루는데, 특히 숙련된 기능공의 작업 경험에 전적으로 의존하는 열간가공 공정에 대한 자동화 요구가 증대되어 국내외적으로 많은 연구가 진행되고 있다. 본 연구는 향후 삼각가열에 대한 효율적인 변형해석 기법을 개발하기 위한 기초 연구로서 삼각가열에 의한 판의 변형특성과 그 주요인자를 파악하고자 하였다. 실제 조선소에서 현장조건 그대로 Jang 등(2001)이 실시한 일련의 삼각가열 실험 결과를 토대로 열탄소성 해석을 위한 수치해석 모델을 개발하고 상용 구조해석 프로그램인 ANSYS를 이용하여 삼각가열에 의한 판의 변형을 시뮬레이션하였다. 또한, 총 투입 열량이 같은 경우 선상가열과 삼각가열에 의한 변형 양상을 비교하여 각 가열법에 따른 변형 특성을 보다 명확히 하였다. 마지막으로, 단위부피당 투입열량에 따른 각 변형 성분의 변화 특성을 살펴보았다.

  • PDF