• Title/Summary/Keyword: ANN 알고리즘

Search Result 169, Processing Time 0.028 seconds

Clustering load patterns recorded from advanced metering infrastructure (AMI로부터 측정된 전력사용데이터에 대한 군집 분석)

  • Ann, Hyojung;Lim, Yaeji
    • The Korean Journal of Applied Statistics
    • /
    • v.34 no.6
    • /
    • pp.969-977
    • /
    • 2021
  • We cluster the electricity consumption of households in A-apartment in Seoul, Korea using Hierarchical K-means clustering algorithm. The data is recorded from the advanced metering infrastructure (AMI), and we focus on the electricity consumption during evening weekdays in summer. Compare to the conventional clustering algorithms, Hierarchical K-means clustering algorithm is recently applied to the electricity usage data, and it can identify usage patterns while reducing dimension. We apply Hierarchical K-means algorithm to the AMI data, and compare the results based on the various clustering validity indexes. The results show that the electricity usage patterns are well-identified, and it is expected to be utilized as a major basis for future applications in various fields.

Implementation of Unsupervised Nonlinear Classifier with Binary Harmony Search Algorithm (Binary Harmony Search 알고리즘을 이용한 Unsupervised Nonlinear Classifier 구현)

  • Lee, Tae-Ju;Park, Seung-Min;Ko, Kwang-Eun;Sung, Won-Ki;Sim, Kwee-Bo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.23 no.4
    • /
    • pp.354-359
    • /
    • 2013
  • In this paper, we suggested the method for implementation of unsupervised nonlinear classification using Binary Harmony Search (BHS) algorithm, which is known as a optimization algorithm. Various algorithms have been suggested for classification of feature vectors from the process of machine learning for pattern recognition or EEG signal analysis processing. Supervised learning based support vector machine or fuzzy c-mean (FCM) based on unsupervised learning have been used for classification in the field. However, conventional methods were hard to apply nonlinear dataset classification or required prior information for supervised learning. We solved this problems with proposed classification method using heuristic approach which took the minimal Euclidean distance between vectors, then we assumed them as same class and the others were another class. For the comparison, we used FCM, self-organizing map (SOM) based on artificial neural network (ANN). KEEL machine learning datset was used for simulation. We concluded that proposed method was superior than other algorithms.

An Estimation Algorithm for the Earth Parameter and Resistivity using Artificial Neural Network (신경회로망을 이용한 대지파라미터와 대지저항률 해석 알고리즘)

  • Ryu, Bo-Hyuk;Kim, Jung-Hoon
    • Proceedings of the KIEE Conference
    • /
    • 2005.07a
    • /
    • pp.563-565
    • /
    • 2005
  • In this study, a algorithm to estimate Equivalent earth resistivity and Earth parameter using Artificial Neural Network(ANN) was proposed. Structures of the soil are grouped by using SOM algorithm before estimation. Earth parameter and Equivalent earth resistivity are obtained by using BP algorithm. The effectiveness of the proposed algorithm was verified. In the case study. afterwards, the algorithm proposed in this study will be used in more applications and gained more reliability.

  • PDF

A predictor-corrector algorithm of the generalized-$\alpha$ method for analysis of structural dynamics (동적해석을 위한 일반화된$\alpha$ 방범의 예측 수정자 알고리즘)

  • ;Hulbert, Gregory M.
    • Journal of KSNVE
    • /
    • v.5 no.2
    • /
    • pp.207-213
    • /
    • 1995
  • A new predictor-corrector explicit time integration algorithm is presented for solving structural dynamics problems. The basis of the algorithm is the implicit generalized-.alpha. method recently developed by the authors. Like its implicit parent, the explicit generalized-$\alpha$ method is a one- parameter family of algorithms in which the parameter defines the high-frequency numerical dissipation. The algorithm can be utilized effectively for linear and nonlinear structural dynamics calculations is which numerical dissipation is needed to reduce spurious oscillations inherent in non-dissipative time integration methods used to solve wave propagation problems.

  • PDF

Pattern Classification Algorithm of DNA Chip Image using ANN (신경망을 이용한 DNA칩 영상 패턴 분류 알고리즘)

  • Joo, Jong-Tae;Kim, Dae-Wook;Sim, Kwee-Bo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.16 no.5
    • /
    • pp.556-561
    • /
    • 2006
  • It is very important to classify the DNA Chip image pattern in order to acquire useful information about genetic disease of people. In this paper, we developed the novel pattern classification method of DNA Chip image using MLP based back-propagation and Self organizing Map learning algorithm. And then we compared and analyzed these classified pattern results. Also we carried out experiment in the MV2440 board using CPU Cote for S3C2440(ARM 920T) and PC environment, and displayed its results in order to give the genetic information to user mote easily in various environment.

ANN-Based Real-Time Damage Detection Technique Using Acceleration Signals in Beam-Type Structures (보 구조물의 가속도 신호를 이용한 인공신경망 기반 실시간 손상검색기법)

  • Park, Jae-Hyung;Lee, Yong-Hwan;Kim, Jeong-Tae
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.20 no.3
    • /
    • pp.229-237
    • /
    • 2007
  • In this study, an artificial neural network (ANN)-based damage detection algorithm using acceleration signals is developed for real-time alarming locations of damage in beam-type structures. A new ANN-algorithm using output-only acceleration responses is designed tot damage detection in real time. The cross-covariance of two acceleration-signals measured at two different locations is selected as the feature representing the structural condition. Neural networks are trained lot potential loading Patterns and damage scenarios of the target structure for which its actual loadings are unknown. The feasibility and practicality of the proposed method are evaluated from laboratory-model tests on free-free beams for which accelerations were measured before and after several damage cases.

A Decision Support Model for Sustainable Collaboration Level on Supply Chain Management using Support Vector Machines (Support Vector Machines을 이용한 공급사슬관리의 지속적 협업 수준에 대한 의사결정모델)

  • Lim, Se-Hun
    • Journal of Distribution Research
    • /
    • v.10 no.3
    • /
    • pp.1-14
    • /
    • 2005
  • It is important to control performance and a Sustainable Collaboration (SC) for the successful Supply Chain Management (SCM). This research developed a control model which analyzed SCM performances based on a Balanced Scorecard (ESC) and an SC using Support Vector Machine (SVM). 108 specialists of an SCM completed the questionnaires. We analyzed experimental data set using SVM. This research compared the forecasting accuracy of an SCMSC through four types of SVM kernels: (1) linear, (2) polynomial (3) Radial Basis Function (REF), and (4) sigmoid kernel (linear > RBF > Sigmoid > Polynomial). Then, this study compares the prediction performance of SVM linear kernel with Artificial Neural Network. (ANN). The research findings show that using SVM linear kernel to forecast an SCMSC is the most outstanding. Thus SVM linear kernel provides a promising alternative to an SC control level. A company which pursues an SCM can use the information of an SC in the SVM model.

  • PDF

STPI Controller of IPMSM Drive using Neural Network (신경회로망을 이용한 IPMSM 드라이브의 STPI 제어기)

  • Ko, Jae-Sub;Choi, Jung-Sik;Chung, Dong-Hwa
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.44 no.2 s.314
    • /
    • pp.24-31
    • /
    • 2007
  • This paper presents self tuning PI(STPI) controller of IPMSM drive using neural network. In general, PI controller in computer numerically controlled machine process fixed gain. They may perform well under some operating conditions, but not all. To increase the robustness of fixed gain PI controller, STPI controller proposes a new method based neural network. STPI controller is developed to minimize overshoot, rise time and settling time following sudden parameter changes such as speed, load torque and inertia. Also, this paper is proposed speed control of IPMSM using neural network and estimation of speed using artificial neural network(ANN) controller. The back propagation neural network technique is used to provide a real time adaptive estimation of the motor speed. The results on a speed controller of IPMSM are presented to show the effectiveness of the proposed gain tuner. And this controller is better than the fixed gains one in terms of robustness, even under great variations of operating conditions and load disturbance.

Speed Control of IPMSM Drive using NNPI Controller (NNPI 제어기를 이용한 IPMSM 드라이브의 속도 제어)

  • Jung, Dong-Wha;Choi, Jung-Sik;Ko, Jae-Sub
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.20 no.7
    • /
    • pp.65-73
    • /
    • 2006
  • This paper presents speed control of IPMSM drive using neural network(NN) PI controller. In general, PI controller in computer numerically controlled machine process fixed gain. They may perform well under some operating conditions, but not all. To increase the robustness of fixed gain PI controller, NNPI controller proposes a new method based neural network. NNPI controller is developed to minimize overshoot rise time and settling time following sudden parameter changes such as speed, load torque and inertia. Also, this paper is proposed speed control of IPMSM using neural network and estimation of speed using artificial neural network(ANN) controller. The back propagation neural network technique is used to provide a real time adaptive estimation of the motor speed. The results on a speed controller of IPMSM are presented to show the effectiveness of the proposed gain tuner. And this controller is better than the fixed gains one in terms of robustness, even under great variations of operating conditions and load disturbance.

Fusion of Evolutionary Neural Networks Speciated by Fitness Sharing (적합도 공유에 의해 종분화된 진화 신경망의 결합)

  • Ahn, Joon-Hyun;Cho, Sung-Bae
    • Journal of KIISE:Software and Applications
    • /
    • v.29 no.1_2
    • /
    • pp.1-9
    • /
    • 2002
  • Evolutionary artificial neural networks (EANNs) are towards the near optimal ANN using the global search of evolutionary instead of trial-and-error process. However, many real-world problems are too hard to be solved by only one ANN. Recently there has been plenty of interest on combining ANNs in the last generation to improve the performance and reliability. This paper proposes a new approach of constructing multiple ANNs which complement each other by speciation. Also, we develop a multiple ANN to combine the results in abstract, rank, and measurement levels. The experimental results on Australian credit approval data from UCI benchmark data set have shown that combining of the speciated EANNs have better recognition ability than EANNs which are not speciated, and the average error rate of 0.105 proves the superiority of the proposed EANNs.