Fusion of Evolutionary Neural Networks Speciated by Fitness Sharing

적합도 공유에 의해 종분화된 진화 신경망의 결합

  • 안준현 ((주)매직하우스테크놀러지) ;
  • 조성배 (연세대학교 컴퓨터과학과)
  • Published : 2002.02.01

Abstract

Evolutionary artificial neural networks (EANNs) are towards the near optimal ANN using the global search of evolutionary instead of trial-and-error process. However, many real-world problems are too hard to be solved by only one ANN. Recently there has been plenty of interest on combining ANNs in the last generation to improve the performance and reliability. This paper proposes a new approach of constructing multiple ANNs which complement each other by speciation. Also, we develop a multiple ANN to combine the results in abstract, rank, and measurement levels. The experimental results on Australian credit approval data from UCI benchmark data set have shown that combining of the speciated EANNs have better recognition ability than EANNs which are not speciated, and the average error rate of 0.105 proves the superiority of the proposed EANNs.

진화 신경망은 기존의 경험적 지식 대신에 진화 알고리즘의 전역 탐색 능력을 사용해서 최적의 신경망을 찾는다. 하지만 실세계의 복잡한 문제는 하나의 신경망으로 해결하기 어려운 경우가 많기 때문에 최근에 하나 이상의 신경망을 결합한 다중 신경망에 관한 연구가 활발히 진행되고 있다. 본 논문에서는 진화과정 중 상호보완 가능한 다양한 신경망을 얻기 위한 종분화 방식을 제안한다. 또한 적합도 공유를 통해 종분화된 진화 신경망의 결과를 효과적으로 결합하기 위해 추상 레벨, 순위 레벨, 측정치 레벨의 여러 결합 방법을 이용한 다중 신경망 시스템을 개발한다. UCI 데이터베이스의 벤치마크 문제 중 호주 신용카드 승인 데이터에 대하여 실험한 결과, 종분화를 사용해 탐색한 신경망을 결합한 경우는 더 높은 인식률을 보였으며 Borda 결합의 경우 0.105의 오류율을 보여 제안한 방법이 효과적임을 알 수 있었다.

Keywords

References

  1. K. Balakrishnan and V. Honavar, 'Evolutionary Design of Neural Architectures - A Preliminary Taxonomy and Guide to Literature,' Tech. Rept. CS TR95.01. Departmet of Computer Science Iowa State University, Ames, 1995
  2. X. Yao, 'Evolving Artificial Neural Networks,' Proceedings of the IEEE, 87(9):1423-1447, September 1999 https://doi.org/10.1109/5.784219
  3. D. W. Opitz and J. W. Shavlik, 'Actively Searching for an Effective Neural Network Ensemble,' Connection Science, Vol 8, Nos 3 & 4, pp. 337-353. 1996 https://doi.org/10.1080/095400996116802
  4. A. J. C. Sharkey, 'On Combining Artificial Neural Nets,' Connection Science, Vol. 8, pp.299-313, 1996 https://doi.org/10.1080/095400996116785
  5. A. J. C. Sharkey and N. E. Sharkey, 'Combining Diverse Neural Nets,' The Knowledge Engineering Review, 12:3, 231-247, 1997 https://doi.org/10.1017/S0269888997003123
  6. S. A. Harp, T. Samad and A. Guha, 'Toward the Genetic Synthesis of Neural Networks,' in Proc. 3rd Int. Conf. Genetic Algorithms and Their Applications, J. D. Schaffer, Ed. San Mateo, CA: Morgan Kaufmann, pp. 379-384, 1989
  7. S. W. Lee, 'Off-line Recognition of Totally Unconstrained Hand-Written Nurnerals Using Multilayer Cluster Neural Network,' IEEE Trans. Pattern Anal. Machine Intell., vol. 18, pp. 648-652, 1996 https://doi.org/10.1109/34.506416
  8. P. A. Castillo, V. Rivas, J.J. Merelo, J. Gonzalez, A. Prieto and G. Romero, 'G-Prop-II: Global Optimization of Multiayer Perceptrons Using GAs,' Proceedings of the 1999 Congress on Evolutionary Computation, vol. 3, pp. 2022-2027, May 1999 https://doi.org/10.1109/CEC.1999.785523
  9. X. Yao and Y. Liu, 'A New Evolutionary System for Evolving Artificial Neural Networks,' IEEE Transactions on Neural Networks, vol 8, pp. 694-713, May 1998 https://doi.org/10.1109/72.572107
  10. L. Xu, A. Krzyzak and C. Y. Suen, 'Methods of Combining Multiplc classifiers and Their Applications to Handwriting Recognition,' IEEE Trans. on Systems, Man and Cybernetics, vol. SMC-22, no. 3, pp. 418-435, 1992 https://doi.org/10.1109/21.155943
  11. 백종현, 다중 인식기의 다단계 결합을 통한 무제약 필기숫자 인식, 연세대학교 대학원 박사학위 논문, 1996
  12. J.C. Bioch ,O.V.D. Meer, and R. Potharst, 'Classification Using Bayesian Neural Nets,' IEEE International Conference on Neural Networks, vol. 3, pp. 1488-1493, 1996 https://doi.org/10.1109/ICNN.1996.549120
  13. M. Perrone and L. N. Coooper, 'When Networks Disagree: Ensemble Methods for Hybrid Neural Networks,' Neural Networks for Speech and Image Processing, Champman Hall, 1993
  14. X. Yao and Y. Liu, 'Making Use of Population Information in Evolutionary Artificial Neural Networks,' IEEE Transactions on Systems, Man and Cybernetics, Part B: Cybernetics, 28(3):417-425, June 1998 https://doi.org/10.1109/3477.678637
  15. A. D. Gordon, Classification: Methods for the Exploratory Analysis of Multivariate Data, Chapman and Hall, 1981
  16. D. Michie, D. J. Spiegelhalter and C. C. Taylor, Machine Learning, Neural and Statistical Classification, 1994