• Title/Summary/Keyword: ANGULAR-VELOCITY

Search Result 916, Processing Time 0.024 seconds

Kinematical Analysis of Lopez Motion in Horse Vault: Comparison between Successful and Failed Trials (도마 Lopez 동작의 운동학적 분석: YHS 선수의 성공과 실패 사례 비교)

  • Park, Cheol-Hee
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.2
    • /
    • pp.167-174
    • /
    • 2020
  • The purpose of this study was to investigate the kinematic comparison between successful and failed trials of Lopez vault techniques in male gymnastics. The subject, an Olympic gold medalist, was YHS (age: 27 years, height: 1.6 m, and mass: 53 kg) and fourteen high speed motion capturing cameras were used for data collection. The 26 reflective sensors were attached on major anatomical positions and 15 segment-body model was used to calculate the kinematic variables. According to results, the contact duration of the spring-board for successful trial(ST) was longer and that of failed trial(FT) and the range of motion of knee joint for ST was greater than that of FT. The movement times during pre-flight between ST and FT were same, but the movement time of horse contact period for ST was shorter than that of FT. The ST showed a longer movement time during post-flight and the longer horizontal distance than those of FT. Conclusively, YHS needs to approach the horse with a higher position of the body and higher incidence angle, as well as make faster twist angular velocity in an attempt to achieve ST.

The Effect of snatch technique improvement for men weightlifter of feedback support through quantity analysis by periods (주기적 정성적분석을 통한 훈련목표 제공이 남자 역도 인상기술 향상에 미치는 영향)

  • Moon, Young-Jin;Ryu, Jung-Hyun;Lee, Soon-Ho
    • Korean Journal of Applied Biomechanics
    • /
    • v.14 no.2
    • /
    • pp.69-83
    • /
    • 2004
  • The purpose of this study is searching for technical merits and demerits of each weight lifting player through qualitative motion analysis system. Moreover, It is also analysis the repeating the establishment of exercise purpose and studying for the effect of the field adaptation. The subject of this study was five male weight lifting players who have been engaged in Korean Delegation Team. The institution of exercise target was made through two times qualitative analysis and the result of studying for the effect of the field adaptation was produced before offering feedback. Moreover, two time analysis added after offering feedback. All analysis was based on 2-D visual analysis. The results of this study are as follows: 1. Maximal barbell moving speed in starting phase was decreased after offering feedback. This result implies advancement of technical skills after offering feedback. 2. From starting posture to 앉아받기, forward and backward moving distance of hip joint was decreased after offering feedback in all subjects. This result represents advancement of technical skills after offering feedback. 3. In terms of pull phase, forward and backward moving distance of hip and shoulder joint was decreased after offering feedback in all subjects. This result represents advancement of technical skills after offering feedback. 4. In terms of pull phase, the difference of horizontal value of coordinates was decreased after offering feedback in all subjects. This result represents advancement of technical skills after offering feedback. 5. In terms of pull phase, the motion range of hip joint was decreased after offering feedback in three of five subjects and this represents advancement of technical skills after offering feedback. However, the rest of them were not variable or narrow decreasing. This result represents that feedback system could not brought tremendous effects. 6. From apex point of barbell to 앉아받기, the difference of barbell height was decreased after offering feedback in three of five subjects and this represents advancement of technical skills after offering feedback. However, the rest of them weren't variable or narrow increasing. This result represents that feedback system could not brought tremendous effects. 7. In terms of last-pull phase, the angular velocity of knee joint was increased after offering feedback in four of five subjects and this represents advancement of technical skills after offering feedback. However, the rest of them, only one subject, decreased. This result represents that feedback system could not brought tremendous effects. 8. In terms of last-pull, the conversional tendency of maximal extension to flextion came out all but simultaneously without offering feedback in four of five subjects. This is well-performed technique. Only one subject, however, could not use power effectively because the fact that his maximal extension came out in serial, from ankle to knee and waist means dispersion of power. In addition to, after offering feedback, only one subject made increasing the maximal extension of knee in last-pull and this result represents advancement of skills after offering feedback. However, the rest of them could not make meaningful development after offering feedback. 9. It might be assumed that searching for technical merits and demerits of each weight lifting player through qualitative motion analysis system could improve player's skill.

A Numerical Study on Dynamic Characteristics of Counter-Rotating Rigid/Deformable Rolls in Press Contact (압착되어 회전하는 강체/변형 롤의 동적 특성에 관한 수치해석 연구)

  • Lee, Moon-Kyu;Lee, Sang-Hyuk;Hur, Nahm-Keon;Seo, Young-Jin;Kim, In-Cheol;Lee, Sung-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.8
    • /
    • pp.869-876
    • /
    • 2011
  • It is important to analyze the dynamic behavior of counter-rotating rigid/deformable rolls in the roll-coating process, because the stability of the process is affected by the dynamic characteristics. In the present study, the effects of material property, angular velocity, and gap size on the contact pressure and contact shape of the deformable roll are numerically investigated. The behavior of two rolls with a negative gap was analyzed using the finite element method, and the material property of the deformable roll was applied with the Mooney-Rivlin coefficients of the hyper-elastic model. The contact shape is affected by the gap size, and the contact pressure mainly depends on the stiffness of the deformable roll and the gap size. To maintain a negative gap between two rolls, controls such as load and displacement controls must be used. The results indicate that displacement control can reduce the instability.

Development of Leg Stiffness Controllable Artificial Tendon Actuator (LeSATA®) Part I - Gait Analysis of the Metatarsophalangeal Joint Tilt Angles Soonhyuck - (하지강성 가변 인공건 액추에이터(LeSATA®)의 개발 Part I - Metatarsophalangeal Joint Tilt Angle의 보행분석 -)

  • Han, Gi-Bong;Eo, Eun-Kyung;Oh, Seung-Hyun;Lee, Soon-Hyuck;Kim, Cheol-Woong
    • Transactions of the KSME C: Technology and Education
    • /
    • v.1 no.2
    • /
    • pp.153-165
    • /
    • 2013
  • The established gait analysis studies have regarded leg as one single spring. If we can design a knee-ankle actuating mechanism as a primary actuator for supporting knee extension, it might be possible to revolutionary store or release elastic strain energy, which is consumed during the gait cycle, and as a result leg stiffness is expected to increase. An ankle joint actuating mechanism that stores and releases the energy in ankle joint is expected to support and solve excessive artificial leg stiffness caused by the knee actuator (primary actuator) to a reasonable extent. If unnecessary kinematic energy is released with the artificial speed reduction control designed to prevent increase in gait speed caused by increase in time passed, it naturally brings question to the effectiveness of the actuator. As opposed to the already established studies, the authors are currently developing knee-ankle two actuator system under the concept of increasing lower limb stiffness by controlling the speed of gait in relative angular velocity of the two segments. Therefore, the author is convinced that compensatory mechanism caused by knee actuating must exist only in ankle joint. Ankle joint compensatory mechanism can be solved by reverse-examining the change in metatarso-phalangeal joint (MTPJ) tilt angle (${\theta}_1=0^{\circ}$, ${\theta}_2=17^{\circ}$, ${\theta}_3=30^{\circ}$) and the effect of change in gait speed on knee activity.

Kinematic Analysis of Horse-Riding Posture According to Skill Levels during Rising Trot with JeJu-horse (제주마를 이용한 승마 경속보시 숙련도에 따른 기승자세의 운동학적 비교분석)

  • Oh, Woon-Yong;Ryew, Che-Cheong;Kim, Jin-Hyun;Hyun, Sung-Hyun
    • Korean Journal of Applied Biomechanics
    • /
    • v.19 no.3
    • /
    • pp.467-479
    • /
    • 2009
  • The purpose of this study was to present the quantitative data which riders can utilize teaching field by comparison analysis of kinematics according to skill level of rider during 2 strides rising trot with the JeJu's-Horse. Participated subjects was consisted of total 10 riders(unskilled: n=5, skilled: n=5). The method of experiment & analysis was based on 3D cinematography. Variables were consisted of temporal, linear & angular kinematics by each event & phase. The skilled assigned more ratio of elapsed time in air than support phase, had the less range of motion in up-down direction and more consistent velocity in lateral & forward direction and performed periodic up-down movement with alignment in vertical direction according to elapsing of phases. The skilled more flexed at elbow and extended backwardly according to elapsing of phases, while more flexed forwardly at hip & knee and plantarflexion at ankle. The skilled postured backward extension but the unskilled do forward flexion. That is, It was considered that the unskilled continued more unstable posture than the skilled during 2 strides in rising trot.

Comparison of Biomechanical Characteristics for the Skill Level in Cycle Pedaling

  • Lee, Geun-Hyuk;Kim, Jai-Jeong;Kang, Sung-Sun;Hong, Ah-Reum;So, Jae-Moo
    • Korean Journal of Applied Biomechanics
    • /
    • v.26 no.1
    • /
    • pp.11-20
    • /
    • 2016
  • Objective: This study aimed to compare biomechanical data between elite and beginner cyclists during cycle pedaling by performing a comparative analysis and to provide quantitative data for both pedaling performance enhancement and injury prevention. Methods: The subjects of this study included 5 elite cyclists (age: $18{\pm}0years$, body mass: $64.8{\pm}9.52kg$, height: $173.0{\pm}4.80cm$) and 5 amateur cyclists (age: $20{\pm}0years$, mass: $66.6{\pm}2.36kg$, height: $175.6{\pm}1.95cm$). The subjects pedaled on a stationary bicycle mounted on rollers of the same gear (front: 50 T and rear: 17 T = 2.94) and cadence of 90. The saddle height was adjusted to fit the body of each subject, and all the subjects wore shoes with cleats. In order to obtain kinematic data, 4 cameras (GR-HD1KR, JVC, Japan) were installed and set at 60 frames/sec. An electromyography (EMG) system (Telemyo 2400T, Noraxon, USA) was used to measure muscle activation. Eight sets of data from both the left and right lower extremities were obtained from 4 muscles (vastus medialis oblique [VMO], vastus lateralis oblique [VLO], and semitendinosus [Semitend], and lateral gastrocnemius [Gastro]) bilaterally by using a sampling frequency of 1,500 Hz. Five sets of events ($0^{\circ}$, $90^{\circ}$, $180^{\circ}$, $270^{\circ}$, and $360^{\circ}$) and 4 phases (P1, P2, P3, and P4) were set up for the data analysis. Imaging data were analyzed for kinematic factors by using the Kwon3D XP computer software (Visol, Korea). MyoResearch XP Master Edition (Noraxon) was used for filtering and processing EMG signals. Results: The angular velocity at $360^{\circ}$ from the feet was higher in the amateur cyclists, but accelerations at $90^{\circ}$ and $180^{\circ}$ were higher in the elite cyclists. The amateur cyclists had greater joint angles at $270^{\circ}$ from the ankle and wider knee joint distance at $0^{\circ}$, $180^{\circ}$, and $360^{\circ}$ than the elite cyclists. The EMG measurements showed significant differences between P2 and P4 from both the right VLO and Semitend. Conclusion: This study showed that lower body movements appeared to be different according to the level of cycle pedaling experience. This finding may be used to improve pedaling performance and prevent injuries among cyclists.

Kinematic Analysis of the Badminton Drive Motion (배드민턴 드라이브 동작의 운동학적 분석)

  • Wei, Lin-Lin;Oh, Cheong-Hwan;Jeong, Ik-Su;Park, Chan-Ho;Lee, Jeong-Tae
    • Korean Journal of Applied Biomechanics
    • /
    • v.19 no.1
    • /
    • pp.77-85
    • /
    • 2009
  • This study is aimed at providing information on injury prevention and skill improvement by inducing the accurate movements in exercise as well as understanding the principles of badminton drive movements. Movement displacement of racket head showed the similar patterns among those surveyed but, it seemed that slight differences resulted from external factors such as height, length of brachial and forearm and individual trend of swing locus. Regarding upper joint angle per phase, the angles of shoulder joint, elbow joint and wrist joint were closely associated in taking drive movements and they supported the segment order theory that power was conveyed from proximal into distal. It was shown that angular velocity of upper joint became larger in follow through movement after impact among all those surveyed, which meant the importance of follow through in racket sports such as badminton. In conclusion, this follow through movement acts as an important factor in racket sports in terms of pose stability maintenance, pose correction of movements and injury prevention of joints. In summary, when swings are made according to segment order theory, efficient movements can be taken.

Head motion during cone-beam computed tomography: Analysis of frequency and influence on image quality

  • Moratin, Julius;Berger, Moritz;Ruckschloss, Thomas;Metzger, Karl;Berger, Hannah;Gottsauner, Maximilian;Engel, Michael;Hoffmann, Jurgen;Freudlsperger, Christian;Ristow, Oliver
    • Imaging Science in Dentistry
    • /
    • v.50 no.3
    • /
    • pp.227-236
    • /
    • 2020
  • Purpose: Image artifacts caused by patient motion cause problems in cone-beam computed tomography (CBCT) because they lead to distortion of the 3-dimensional reconstruction. This prospective study was performed to quantify patient movement during CBCT acquisition and its influence on image quality. Materials and Methods: In total, 412 patients receiving CBCT imaging were equipped with a wireless head sensor system that detected inertial, gyroscopic, and magnetometric movements with 6 dimensions of freedom. The type and amplitude of movements during CBCT acquisition were evaluated and image quality was rated in 7 different anatomical regions of interest. For continuous variables, significance was calculated using the Student t-test. A linear regression model was applied to identify associations of the type and extent of motion with image quality scores. Kappa statistics were used to assess intra- and inter-rater agreement. Chi-square testing was used to analyze the impact of age and sex on head movement. Results: All CBCT images were acquired in a 10-month period. In 24% of the investigations, movement was recorded (acceleration: >0.10 [m/s2]; angular velocity: >0.018 [°/s]). In all examined regions of interest, head motion during CBCT acquisition resulted in significant impairment of image quality (P<0.001). Movement in the horizontal and vertical axes was most relevant for image quality (R2>0.7). Conclusion: Relevant head motions during CBCT imaging were frequently detected, leading to image quality loss and potentially impairing diagnosis and therapy planning. The presented data illustrate the need for digital correction algorithms and hardware to minimize motion artefacts in CBCT imaging.

A Kinematic Analysis of the Defence Types during Body Lock Technique in the Ground Wrestling (그라운드 레슬링 가로들기 공격 시 수비 유형의 운동학적 분석)

  • Hah, Chong-Ku;Ryu, Ji-Seon
    • Korean Journal of Applied Biomechanics
    • /
    • v.17 no.1
    • /
    • pp.155-164
    • /
    • 2007
  • This study is to find out effective defensive type by analysis on differences among three different defence types of the body lock technique in the ground wrestling. The subjects are 5 athletes who are in 60kg weight class. To get the kinematic analysis seven ProReflex MCU-240(Motion Capture Unit), infrared rays cameras, which was produced by Qualisys, were used to get a two-dimensional coordinate. Following are the analysis result from kinematic factors such as time element, speed element and angular element. 1. During position of ground wrestling, the average necessary time until defender's hip joint touches the mat for Phase1 was $0.34{\pm}0.14sec$ at side position was the shortest space of time out of three types, and Phase2 was $0.21{\pm}0.02sec$ at front position was the shortest space of time out of three types. Moreover, side defence position was the shortest for total average necessary time with $0.78{\pm}0.05sec$. 2. The movement change for hip joint was $57.21{\pm}20.17cm$ for front, $43.35{\pm}7.13cm$ for rear, and $18.67{\pm}10.24cm$ for side at Phase1 and $42.08{\pm}17.56cm$ for side, $16.61{\pm}6.34cm$ for front, and $1.48{\pm}1.29cm$ for rear at Phase2. 3. Movement speed of hip joint at defensive type were most effective in success and fail rate at Phase 1 and its frontal average speed was fastest with $1.01{\pm}0.23m/s$ following by $0.52{\pm}0.15m/s$ for side, and $0.62{\pm}0.15m/s$ for rear. The average for total change of speed is $0.79{\pm}0.32m/s$ for front, $0.78{\pm}0.17m/s$ for side, and $0.49{\pm}0.08m/s$ for rear. 4. The joint angle gets smaller in a order by rear, front, and side for the size of hip joint angle and knee angle for different defensive type. 5. As a result of one-way ANOVA on linear velocity for hip joint in frontal defence(phase1) was significance ($\alpha$=.05), but phase 2 was not significance. Synthetically, analyzing on differences among three different defence types which were front, rear, and side of the body lock technique in the ground wrestling, front defensive type was the most effective. In future, there should be more studies regarding on defence at not a laboratory study but a field study to help out wrestler to pertinent techniques to improve the game of wrestling.

Design and Control of Hybrid a Powered Wheelchair for the Elderly (고령자를 위한 하이브리드형 전동 휠체어의 설계 및 제어)

  • Yoon, Tae-Su;Ann, Sung-Jo;Kim, Sang-Min;Han, Young-Bin;Kim, Jung-Yup
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.12
    • /
    • pp.1067-1076
    • /
    • 2016
  • This paper describes the development of a hybrid-powered wheelchair (HPW) for the elderly. The proposed HPW has novel mechanical and control features compared with conventional powered wheelchairs. An ergonomic back-braking mechanism was designed in order to stop the wheels easily. In terms of control features, the HPW remarkably reduces the muscle power required by combining various assistive functions, such as wheel torque assistance, friction/inertia compensation, gravity compensation, and the one-hand driving algorithm. For wheel torque assistance, strain gauges were attached to the hand-rim in order to measure the wheel torque applied by a human. Gyroscopes and an accelerometer were attached to the wheel and chair respectively for friction and inertia compensation. An inclinometer was attached for gravity compensation and the one-hand driving algorithm was included for patients who can only use one hand. The one-hand driving algorithm controls the angular velocity of the uncontrolled wheel by using a gyroscope and pressure sensors attached to the bottom of the seat. Finally, the performance of the proposed motion assisted algorithm was verified through various experiments.