• Title/Summary/Keyword: ANFIS model

Search Result 134, Processing Time 0.027 seconds

A Novel Algorithm for Fault Classification in Transmission Lines Using a Combined Adaptive Network and Fuzzy Inference System

  • Yeo, Sang-Min;Kim, Chun-Hwan
    • KIEE International Transactions on Power Engineering
    • /
    • v.3A no.4
    • /
    • pp.191-197
    • /
    • 2003
  • Accurate detection and classification of faults on transmission lines is vitally important. In this respect, many different types of faults occur, such as inter alia low impedance faults (LIF) and high impedance faults (HIF). The latter in particular pose difficulties for the commonly employed conventional overcurrent and distance relays, and if undetected, can cause damage to expensive equipment, threaten life and cause fire hazards. Although HIFs are far less common than LIFs, it is imperative that any protection device should be able to satisfactorily deal with both HIFs and LIFs. Because of the randomness and asymmetric characteristics of HIFs, their modeling is difficult and numerous papers relating to various HIF models have been published. In this paper, the model of HIFs in transmission lines is accomplished using the characteristics of a ZnO arrester, which is then implemented within the overall transmission system model based on the electromagnetic transients program (EMTP). This paper proposes an algorithm for fault detection and classification for both LIFs and HIFs using Adaptive Network-based Fuzzy Inference System (ANFIS). The inputs into ANFIS are current signals only based on Root-Mean-Square (RMS) values of 3-phase currents and zero sequence current. The performance of the proposed algorithm is tested on a typical 154 kV Korean transmission line system under various fault conditions. Test results demonstrate that the ANFIS can detect and classify faults including LIFs and HIFs accurately within half a cycle.

Metaheuristic models for the prediction of bearing capacity of pile foundation

  • Kumar, Manish;Biswas, Rahul;Kumar, Divesh Ranjan;T., Pradeep;Samui, Pijush
    • Geomechanics and Engineering
    • /
    • v.31 no.2
    • /
    • pp.129-147
    • /
    • 2022
  • The properties of soil are naturally highly variable and thus, to ensure proper safety and reliability, we need to test a large number of samples across the length and depth. In pile foundations, conducting field tests are highly expensive and the traditional empirical relations too have been proven to be poor in performance. The study proposes a state-of-art Particle Swarm Optimization (PSO) hybridized Artificial Neural Network (ANN), Extreme Learning Machine (ELM) and Adaptive Neuro Fuzzy Inference System (ANFIS); and comparative analysis of metaheuristic models (ANN-PSO, ELM-PSO, ANFIS-PSO) for prediction of bearing capacity of pile foundation trained and tested on dataset of nearly 300 dynamic pile tests from the literature. A novel ensemble model of three hybrid models is constructed to combine and enhance the predictions of the individual models effectively. The authenticity of the dataset is confirmed using descriptive statistics, correlation matrix and sensitivity analysis. Ram weight and diameter of pile are found to be most influential input parameter. The comparative analysis reveals that ANFIS-PSO is the best performing model in testing phase (R2 = 0.85, RMSE = 0.01) while ELM-PSO performs best in training phase (R2 = 0.88, RMSE = 0.08); while the ensemble provided overall best performance based on the rank score. The performance of ANN-PSO is least satisfactory compared to the other two models. The findings were confirmed using Taylor diagram, error matrix and uncertainty analysis. Based on the results ELM-PSO and ANFIS-PSO is proposed to be used for the prediction of bearing capacity of piles and ensemble learning method of joining the outputs of individual models should be encouraged. The study possesses the potential to assist geotechnical engineers in the design phase of civil engineering projects.

사회네트워크에서 잠재된 신뢰관계망 추론을 위한 ANFIS 모형

  • Song, Hui-Seok
    • Proceedings of the Korea Database Society Conference
    • /
    • 2010.06a
    • /
    • pp.277-287
    • /
    • 2010
  • We are sometimes interacting with people who we know nothing and facing with the difficult task of making decisions involving risk in social network. To reduce risk, the topic of building Web of trust is receiving considerable attention in social network. The easiest approach to build Web of trust will be to ask users to represent level of trust explicitly toward another users. However, there exists sparsity issue in Web of trust which is represented explicitly by users as well as it is difficult to urge users to express their level of trustworthiness. We propose a fuzzy-based inference model for Web of trust using user behavior information in social network. According to the experiment result which is applied in Epinions.com, the proposed model show improved connectivity in resulting Web of trust as well as reduced prediction error of trustworthiness compared to existing computational model.

  • PDF

A Development of Real Time Artificial Intelligence Warning System Linked Discharge and Water Quality (I) Application of Discharge-Water Quality Forecasting Model (유량과 수질을 연계한 실시간 인공지능 경보시스템 개발 (I) 유량-수질 예측모형의 적용)

  • Yeon, In-Sung;Ahn, Sang-Jin
    • Journal of Korea Water Resources Association
    • /
    • v.38 no.7 s.156
    • /
    • pp.565-574
    • /
    • 2005
  • It is used water quality data that was measured at Pyeongchanggang real time monitoring stations in Namhan river. These characteristics were analyzed with the water qualify of rainy and nonrainy periods. TOC (Total Organic Carbon) data of rainy periods has correlation with discharge and shows high values of mean, maximum, and standard deviation. DO (Dissolved Oxygen) value of rainy periods is lower than those of nonrainy periods. Input data of the water quality forecasting models that they were constructed by neural network and neuro-fuzzy was chosen as the reasonable data, and water qualify forecasting models were applied. LMNN, MDNN, and ANFIS models have achieved the highest overall accuracy of TOC data. LMNN (Levenberg-Marquardt Neural Network) and MDNN (MoDular Neural Network) model which are applied for DO forecasting shows better results than ANFIS (Adaptive Neuro-Fuzzy Inference System). MDNN model shows the lowest estimation error when using daily time, which is qualitative data trained with quantitative data. The observation of discharge and water quality are effective at same point as well as same time for real time management. But there are some of real time water quality monitoring stations far from the T/M water stage. Pyeongchanggang station is one of them. So discharge on Pyeongchanggang station was calculated by developed runoff neural network model, and the water quality forecasting model is linked to the runoff forecasting model. That linked model shows the improvement of waterquality forecasting.

An enhancement of GloSea5 ensemble weather forecast based on ANFIS (ANFIS를 활용한 GloSea5 앙상블 기상전망기법 개선)

  • Moon, Geon-Ho;Kim, Seon-Ho;Bae, Deg-Hyo
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.11
    • /
    • pp.1031-1041
    • /
    • 2018
  • ANFIS-based methodology for improving GloSea5 ensemble weather forecast is developed and evaluated in this study. The proposed method consists of two steps: pre & post processing. For ensemble prediction of GloSea5, weights are assigned to the ensemble members based on Optimal Weighting Method (OWM) in the pre-processing. Then, the bias of the results of pre-processed is corrected based on Model Output Statistics (MOS) method in the post-processing. The watershed of the Chungju multi-purpose dam in South Korea is selected as a study area. The results of evaluation indicated that the pre-processing step (CASE1), the post-processing step (CASE2), pre & post processing step (CASE3) results were significantly improved than the original GloSea5 bias correction (BC_GS5). Correction performance is better the order of CASE3, CASE1, CASE2. Also, the accuracy of pre-processing was improved during the season with high variability of precipitation. The post-processing step reduced the error that could not be smoothed by pre-processing step. It could be concluded that this methodology improved the ability of GloSea5 ensemble weather forecast by using ANFIS, especially, for the summer season with high variability of precipitation when applied both pre- and post-processing steps.

Enhanced Variable Structure Control With Fuzzy Logic System

  • Charnprecharut, Veeraphon;Phaitoonwattanakij, Kitti;Tiacharoen, Somporn
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.999-1004
    • /
    • 2005
  • An algorithm for a hybrid controller consists of a sliding mode control part and a fuzzy logic part which ar purposely for nonlinear systems. The sliding mode part of the solution is based on "eigenvalue/vector"-type controller is used as the backstepping approach for tracking errors. The fuzzy logic part is a Mamdani fuzzy model. This is designed by applying sliding mode control (SMC) method to the dynamic model. The main objective is to keep the update dynamics in a stable region by used SMC. After that the plant behavior is presented to train procedure of adaptive neuro-fuzzy inference systems (ANFIS). ANFIS architecture is determined and the relevant formulation for the approach is given. Using the error (e) and rate of error (de), occur due to the difference between the desired output value (yd) and the actual output value (y) of the system. A dynamic adaptation law is proposed and proved the particularly chosen form of the adaptation strategy. Subsequently VSC creates a sliding mode in the plant behavior while the parameters of the controller are also in a sliding mode (stable trainer). This study considers the ANFIS structure with first order Sugeno model containing nine rules. Bell shaped membership functions with product inference rule are used at the fuzzification level. Finally the Mamdani fuzzy logic which is depends on adaptive neuro-fuzzy inference systems structure designed. At the transferable stage from ANFIS to Mamdani fuzzy model is adjusted for the membership function of the input value (e, de) and the actual output value (y) of the system could be changed to trapezoidal and triangular functions through tuning the parameters of the membership functions and rules base. These help adjust the contributions of both fuzzy control and variable structure control to the entire control value. The application example, control of a mass-damper system is considered. The simulation has been done using MATLAB. Three cases of the controller will be considered: for backstepping sliding-mode controller, for hybrid controller, and for adaptive backstepping sliding-mode controller. A numerical example is simulated to verify the performances of the proposed control strategy, and the simulation results show that the controller designed is more effective than the adaptive backstepping sliding mode controller.

  • PDF

Forecast of Stream Level Using ANFIS (ANFIS를 이용한 하천수위 예측)

  • Choi, Chang-Won;Yi, Jae-Eung
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2007.05a
    • /
    • pp.132-136
    • /
    • 2007
  • 최근 지구온난화로 인한 이상기후의 영향으로 강우일수는 줄고 있으나 강수량은 예년과 비슷한 수준을 보이고 있다. 이로 인해 갈수기의 용수부족 현상은 더욱 심해지고. 장마철의 홍수피해와 게릴라성 집중호우로 인한 피해가 커지는 등 해가 갈수록 홍수 예경보의 중요성은 더욱 높아지고 있다. 그럼에도 불구하고 현재 홍수 예경보 체계는 몇 가지 문제를 가지고 있다. 기존 예경보 체계의 경우 한 번의 예측을 수행하기 위해 수반되는 전처리과정과 주계산과정을 거치는 동안 각 과정에서 발생한 오차들이 반복, 누적되어 최종 결과물(예측된 유출량) 속에 모두 포함된다. 또한 기존 체계에서는 유출모형을 적용하기 위해서 토양형. 피복상태 등에 관련된 매개변수들이 필요한데. 이러한 매개변수의 결정에 어려움이 있고. 불확실성을 갖고 있다. 본 연구에서는 불확실성을 적극적으로 인정하고 수학적으로 해석하려는 fuzzy 이론을 신경망 이론에 도입하여 홍수 예경보 시스템의 운영과정에서 발생하는 불확실성의 문제를 해결하고자 하였다. 본 연구에서 사용한 ANFIS(Adaptive Neuro-Fuzzy Inference System)은 data driven model(자료에 기반을 둔 모형)의 하나로 다음과 같은 장점을 가진다. 우선 data driven model은 유역의 물리적, 지형적 특성을 고려하지 않고(매개변수설정에서 발생하는 문제 해결 가능), 입력자료와 출력자료만을 고려하여 구축되는 모형이므로, 유역의 물리적 자료나 지형 자료와 같은 방대한 양의 자료 수집이 필요 없고, 일단 모형이 구축되면 자료의 입력만으로도 신뢰성 높은 결과를 단시간 내에 효율적으로 획득할 수 있다. 그리고 유역 내의 상황이 변화하더라도, 이들의 영향을 고려하여 쉽게 모형을 갱신할 수 있다. 마지막으로 모형의 구축 과정이 물리적 모형에 비해 비교적 간편하다는 장점이 있다. 본 연구에서는 ANFIS를 통해 탄천유역의 강수량 자료와 대곡교의 수위자료를 입력자료로 사용하여 대곡교의 수위를 예측하였다. 입력 자료는 시간차 계열의 강우량과 수위 자료를 사용하였으며 모형을 통하여 t+1, t+2, t+3 시간 후의 수위를 예측하였다.

  • PDF

Neuro-fuzzy and artificial neural networks modeling of uniform temperature effects of symmetric parabolic haunched beams

  • Yuksel, S. Bahadir;Yarar, Alpaslan
    • Structural Engineering and Mechanics
    • /
    • v.56 no.5
    • /
    • pp.787-796
    • /
    • 2015
  • When the temperature of a structure varies, there is a tendency to produce changes in the shape of the structure. The resulting actions may be of considerable importance in the analysis of the structures having non-prismatic members. The computation of design forces for the non-prismatic beams having symmetrical parabolic haunches (NBSPH) is fairly difficult because of the parabolic change of the cross section. Due to their non-prismatic geometrical configuration, their assessment, particularly the computation of fixed-end horizontal forces and fixed-end moments becomes a complex problem. In this study, the efficiency of the Artificial Neural Networks (ANN) and Adaptive Neuro Fuzzy Inference Systems (ANFIS) in predicting the design forces and the design moments of the NBSPH due to temperature changes was investigated. Previously obtained finite element analyses results in the literature were used to train and test the ANN and ANFIS models. The performances of the different models were evaluated by comparing the corresponding values of mean squared errors (MSE) and decisive coefficients ($R^2$). In addition to this, the comparison of ANN and ANFIS with traditional methods was made by setting up Linear-regression (LR) model.

Future Trend Impact Analysis Based on Adaptive Neuro-Fuzzy Inference System (ANFIS 접근방식에 의한 미래 트랜드 충격 분석)

  • Kim, Yong-Gil;Moon, Kyung-Il;Choi, Se-Ill
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.10 no.4
    • /
    • pp.499-505
    • /
    • 2015
  • Trend Impact Analysis(: TIA) is an advanced forecasting tool used in futures studies for identifying, understanding and analyzing the consequences of unprecedented events on future trends. An adaptive neuro-fuzzy inference system is a kind of artificial neural network that integrates both neural networks and fuzzy logic principles, It is considered to be a universal estimator. In this paper, we propose an advanced mechanism to generate more justifiable estimates to the probability of occurrence of an unprecedented event as a function of time with different degrees of severity using Adaptive Neuro-Fuzzy Inference System(: ANFIS). The key idea of the paper is to enhance the generic process of reasoning with fuzzy logic and neural network by adding the additional step of attributes simulation, as unprecedented events do not occur all of a sudden but rather their occurrence is affected by change in the values of a set of attributes. An ANFIS approach is used to identify the occurrence and severity of an event, depending on the values of its trigger attributes. The trigger attributes can be calculated by a stochastic dynamic model; then different scenarios are generated using Monte-Carlo simulation. To compare the proposed method, a simple simulation is provided concerning the impact of river basin drought on the annual flow of water into a lake.