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A Novel Algorithm for Fault Classification in Transmission Lines Using

a Combined Adaptive Network and Fuzzy Inference System

Sang-Min Yeo* and Chun-Hwan Kim**

Abstract - Accurate detection and classification of faults on transmission lines is vitally important. In
this respect, many different types of faults occur, such as inter alia low impedance faults (LIF) and
high impedance faults (HIF). The latter in particular pose difficulties for the commonly employed con-
ventional overcurrent and distance relays, and if undetected, can cause damage to expensive equipment,
threaten life and cause fire hazards. Although HIFs are far less common than LIFs, it is imperative that
any protection device should be able to satisfactorily deal with both HIFs and LIFs.

Because of the randomness and asymmetric characteristics of HIFs, their modeling is difficult and nu-
merous papers relating to various HIF models have been published. In this paper, the model of HIFs in
transmission lines is accomplished using the characteristics of a ZnQO arrester, which is then implemented
within the overall transmission system model based on the electromagnetic transients program (EMTP).
This paper proposes an algorithm for fault detection and classification for both LIFs and HIFs using
Adaptive Network-based Fuzzy Inference System (ANFIS). The inputs into ANFIS are current signals
only based on Root-Mean-Square (RMS) values of 3-phase currents and zero sequence current.

The performance of the proposed algorithm is tested on a typical 154 kV Korean transmission line sys-
tem under various fault conditions. Test results demonstrate that the ANFIS can detect and classify

faults including LIFs and HIFs accurately within half a cycle.
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1. Introduction

Since the complexity of modem power systems is in-
creasing (longer lines, increased power transfer over exist-
ing lines due to the limitations imposed by environmental
pressures, etc.), traditional analogue relaying is no longer
capable of coping with performance requirements. Hence
there is an advantage to employing digital protection relays,
which are much better suited to handling the modern-day
protection problems, particularly in terms of speed and ac-
curacy. The purpose of a protective relaying system is to
detect the abnormal signals indicating faults on a transmis-
sion system and isolate the faulted component from the rest
of the system thereby preventing the propagation of the
fault into other areas [1].

In this respect, there is now ongoing work to further im-
prove the performance of digital protection relays. Protect-
ing transmission lines is one important task to safeguard
electric power systems. Faults on transmission lines need
to be detected, classified and located accurately so that
they can be cleared as quickly as possible. Fast and reliable
fault classification is thus paramount in the overall protec-
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tion strategy [1]-[2].

Many researchers have studied the application of neural
networks to overcome many of the aforementioned prob-
lems [3]-[11]. Hitherto, the algorithms developed include
the high frequency voltage signal method [5], a statistical
method [6], a numerical algorithm [7]-[8], wavelet trans-
form [9], the neural network and the neuro-fuzzy network
[10]-[11].

Jang and Sun introduced the adaptive network-based
fuzzy inference system (ANFIS). This system makes use of
a hybrid leamning rule to optimize the fuzzy system pa-
rameters of the first order Sugeno system [12]-[13]. It is
composed of five layers. Each layer is a component of the
fuzzy inference system and performs different actions. Us-
ing the back propagation method of training a neural net-
work, fuzzy premise and consequent parameters are tuned
properly.

This paper develops an algorithm of fault classification
using ANFIS. The inputs for ANFIS are RMS values of 3-
phase currents and zero sequence current. The performance
of the proposed algorithm is evaluated for a typical 154 kV
Korean transmission line system under various fault condi-
tions.
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2. Fault Classification Algorithm
2.1 System model studied

In the work presented herein, the model system studied
is the Korean 154 kV system as shown in Fig. 1.
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Fig. 1 Simulation model of 154 kV system

It is comprised of a 26 km line length terminated in two
sources of 240 MVA and 180 MVA each at both ends of
the line. Fault data is generated for fault conditions such as
variation in fault distance, fault inception angle and fault
types, at a sampling rate of 64 samples per cycle. The HIF
simulation is based on a ZnO arrester model [14]-[17]
which is embedded into the overall transmission line model,
and the impedance of HIF is approximately 200Q.

Table 1 details source and line parameters of the model
system considered and Table 2 shows the various fault
conditions.

Table 1 Source and line parameters

Zero Seq. Pos. Seq.
_ R[S /km] 0.2293 0.0419
Line Con- o0 1.0050 03316
stants
C[umho/km] 1.6260 4.8309
Capacity 240MVA
Yoneln Power Factor 0.91
Sabe Z o] Zo= 1.128 + j0.0155
Z, = 0.820 + j6.7482
Zload[sz ] Zy =89.93+ _]4096
Capacity 180MVA
AnS Power Factor 0.91
Substatin .y Zo = 1.5050 + J7.5775
Z, = 0.9400+ j8.6595
Ziag[ K2 ] Zy =119.90 + j54.62

Table 2 Fault conditions

Test Condition

Type SLG, DLG, DLL, 3¢G, HIF
Inception Angle 0°, 30°, 60°, 90°
Location 5.2(20%), 13(50%), 20.8(80%) [km]

2.2 The characteristics of fault currents

Generally, when faults occur on transmission lines,
magnitudes of faulted phase currents are increased and are
often manifested with either harmonic or dc-offset compo-
nents. However, the increase in fault phase current(s) in the
case of HIFs is much smaller in comparison to LIFs.

Fig. 2 typifies the RMS values of currents for each fault
type. As expected, the increase in fault currents under LIFs
is much higher than under HIFs. Thus, in principle, fault
classification between LIFs and HIFs can be achieved
through knowledge of RMS values of currents. However,
deducing only change of RMS values is insufficient to
classify fault type between double line-to-ground faults and
line-to-line faults because of similarities of change in the
two types of faults and other means of accurately classify-
ing these types of fault must be found.
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Fig. 2 RMS values of current for each fault type

In this paper, this problem is overcome by developing a
fault classification algorithm using RMS values of phase
currents combined with the zero sequence current as shown
below.

Zero sequence current is calculated by equation (1).

10=§(1a+1,,+1() (1)

However, zero sequence current in the case of HIFs is
increased at a much smaller rate in comparison with LIFs
and thus in the technique developed herein, equation (1) is
modified into the following equation:

Io=(1n+1b+1c) (2)

As can be seen, although the magnitude of the modified
zero sequence current is increased, it still retains the char-
acteristics of the zero sequence current. Fig. 3 shows the
RMS values of zero sequence current for each fault type.
As expected, magnitudes of the zero sequence currents are
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near zero for fault types such as line-to-line fault, 3-phase
‘ault, and normal state, but a fault involving ground has a
:10n-zero value.
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Fig. 3 RMS values of zero sequence current for each fault type
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Fig. 4 Distribution for RMS values of zero sequence currents

Table 3 Fault characteristics for each fault type

Zero Seq.
Current
Fault Type Phase Voltage Phase Current compared
with normal
state current
a decrease Much increase large
SLG b decrease Much increase large
‘ decrease Much increase large
ab decrease Much increase large
DLG | be decrease Much increase large
ca decrease Much increase large
ab decrease Much increase 0
DLL | bc decrease Much increase 0
ca decrease Much increase 0
3¢G | abc decrease Much increase 0
a_ | very little variation | very little variation small
HIF b | very little variation| very little variation small
very little variation | very little variation small

Fig. 4 shows the distribution region of RMS values of
zero sequence currents for each fault type on condition that
the magnitude of RMS value of a phase current at normal
steady state is set to be 100%. Results of Fig. 4 are summa-
rized in Table 3.

2.3 Fault classification algorithm

In the case of transmission line faults, the characteristics

of fault currents are mentioned above. In particular, since
the level of fault current at high impedance fault is similar
to the level of overload currents, it is difficult to detect
high impedance faults. Of course, by using zero sequence
current, it is possible to classify the fault as a low imped-
ance fault or not. But, the purpose of this paper is to
classify detailed types of faults. Therefore, the zero
sequence current is inadequate for the proposed algorithm.
In this paper, the proposed algorithm detects high
impedance fault by level of zero sequence current, and
classifies types of faults by the phase current.

Moreover, the algorithm of fault classification has
adaptability for various characteristics of the power system.
ANFIS makes use of a hybrid learning rule to optimize the
fuzzy system parameters of the first-order Sugeno system.
And using the back propagation method for training a neu-
ral network, fuzzy premise and consequent parameters are
tuned properly. Also, ANFIS adapts to characteristics of
the system, so the proposed algorithm can be applied to
various system configurations.
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Fig. § Diagram of the proposed algorithm

As shown above, the fault classification algorithm is de-
veloped using ANFIS based on the characteristics of faults.
Fig. 5 shows the diagram of the proposed algorithm. The
proposed algorithm is comprised of 3 basic steps.

(1) Acquire three phase currents

(2) Calculate zero sequence current

(3) Deduce fault type using ANFIS

If inference results are zero, then this signifies a situa-
tion without faults. However, if inference results are non-
zero, then the technique indicates both the presence of a
fault and a fault type.

Fig. 6 shows the ANFIS architecture adopted herein. It
consists of five layers, but since the ANIFS based algo-
rithm employed herein has only one input, layer 2 can be
combined with layer 1.

©input

: membership function

: firing strengths
normalized firing strengths

: normalize

: output

~ZHE Pu

Input Layer 182 Layer3 Layer4 Layer5 Output

Fig. 6 ANFIS architecture
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The following three rules are used:

Rule 1: If xis A, then fi=px+r,.
Rule 2: If x is A; then fi=pyx+r,.
Rule 3: If x is A; then f3=p3x+r;.

The various layers can be described as follows.

Layer 1: Fuzzification (membership) - Here the trape-
zoid function is used as a membership function and is
specified by four parameters {a;, b;, c;, d;} as follows:

xX—a

trapezoid(x : a,,b,,c,,d,) = max| min d ,l,iii’—x 0 3)
b—a, d —c

where the input x represents RMS values of phase currents
and zero sequence current for the proposed algorithm, and,
the membership functions used in ANFIS are depicted in
Fig.s 7 and 8. It is apparent that the two types of member-
ship functions are very different from each other; {qa;, b;, c;,
d;} is the set parameter and the parameters in this layer are
referred to as premise parameters.
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Fig. 7 Membership function  Fig. 8 Membership function
for phase current for zero sequence current

Layer 2: Conjunction - Every node in this layer multi-
plies incoming signals for multi-input. But since only one
input is adopted in the proposed algorithm (see equation
(4)), multiplication of incoming signals is avoided.

0,,=0,, »i=1273 4

2,

Layer 3: Normalization - This architecture has three
rules. Each node in this layer calculates the ratio of the i
rule’s firing strength to the sum of all the rules’ firing
strengths:

Wi ,i=1,2,3 3)

=Wy =
w, +w, +w,

W

0,

Layer 4: Defuzzification - Each node i in this layer is an
adaptive node with a node function.

04V,.=;,~f,.=;,-(p,.x+r,.) (6)

where w is the output of layer 3 and {p;, r;} is the pa-
rameter set.

Layer 5: Summation - The single node in this layer
computes the overall output as the summation of all incom-
ing signals.

O, =f= (;l)c)pl + (;1 i+ (sz)p2 7

+(w2)r, + (Wax) ps + (W),

The consequent parameters, pl, g1, r1, p2, g2 and r2,
are linear. Therefore, the hybrid learning algorithm devel-
oped in the previous section can be applied directly. More
specifically, in the forward pass of the hybrid learning
algorithm, node outputs progress until layer 4 and the
consequent parameters are identified by the least squares
method. In the backward pass, the error signals propagate
backward and the premise parameters are updated by gra-
dient descent. The consequent parameters thus identified
are optimal under the condition that the premise parameters
are fixed. Accordingly, the hybrid approach converges
much faster, since it reduces the dimension of the search
space of the original back-propagation method. In this pa-
per, sample signals for training are acquired by the EMTP
simulation.

Table 4 Definition of outputs

ANFIS
Fault Type | ] I ] Io
a 2 0 0 2
SLG b 0 2 0 2
c 0 0 2 2
ab 2 2 0 2
DLG bc 0 2 2 2
ca 2 0 2 2
ab 2 2 0 0
LL bc 0 2 2 0
ca 2 0 2 0
30G abc 2 2 2 0
a 1 0 0 1
HIF b 0 1 0 1
c 0 0 1 1
Unfaulted 0 0 0 0

The proposed algorithm developed herein consists of 4
ANFIS for ‘a’, ‘b’, ‘c’-phase currents and zero sequence
current, respectively. The inputs to the ANFIS are RMS
values of 3-phase currents and zero sequence current. The
values of output signify four categories associated with the
‘a’, ‘b’, ‘c’-phase and zero sequence currents. If any of the
outputs from the first 3 ANFIS (i.e. Ia, Ib, Ic) is ‘1’ then
this indicates an HIF, in the case of ‘2’, it is LIF, and in the
case of ‘0’, there is no fault. For the 4™ ANFIS (i.e. Io)
considered, ‘2°, ‘1’ and ‘0’ signify a ground fault for LIF,
HIF or a fault clear of ground, respectively. This criterion
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s summarized in Table 4.

3. Simulation and Results

In this section, results illustrating the performance of the
proposed algorithm are presented.

Fault cases studied are described in Table 2. As men-
tioned before, the performance of the proposed algorithm is
tzsted for the Korean model system under various faul
conditions such as fault inception angle, fault distance and
fault types.

3.1 Results of the simulation under LIF

Figs 9 ~ 10 typify the outputs of the various ANFIS for
fault classification for single line-to-ground fault, double
line-to-ground fault, line-to-line fault and 3-phase fault,
respectively. As expected, all results show accurate outputs
for each of the fault conditions considered. Importantly, the
entire process of fault detection and classification is
achieved in approximately Smsec from the time the fault
initiates, A more comprehensive performance of the tech-
igue under LIF is summarized in Table S.

o N

The output of the proposed algorithm

Time [smsec)
Fig. 9 Result for single line-to-ground fault
(‘a’ phase, at 20% of line and at a fanlt inception angle of 90°)

The output of the propased algadithrn

Time jmsec)
Fig. 10 Result for 3-phase fault
(at 80% of line and at a fanlt inception angle of 90°)

3.2 Results of the simulation under HIF

As mentioned before, because of the randomness,
asyminetry and low levels of fault currents, HIFs pose par-
ticular difficulty in detection and classification when em-
ploying traditional protection techniques. Nevertheless, Fig,
11 graphically depicts the satisfactory performance of the
technique for a high impedance single line-to-ground fault
under HIF. Again, a more comprehensive performance is
summarized in Table 5.

The qutput of the proposed algotithrft

Time {msec]

Fig. 11 Result for high tmpedance fault
(‘a’ phase, at 20% of line and at a fault inception angle of 0°)

As expected, the ANFIS technigue also gives the correct
output (i.e. all 0’s) under normal steady-state conditions,
and Fig. 12 shows the result of the proposed algorithm for
an unfaulted situation.

[S]

in

bl
@«

The autput of the proposed algadthm

o

Time Jmsec)

Fig. 12 Resylt for an unfaulted system

3.3 Summary

Table 3 summarizes the performance of the proposed al-
gorithm for all the faulted and unfanhed cases studied. The
classification time is calculated as the interval time from
fault inception time to the fault classification type time,
and error rate is calculated as:

error samples

X 100{%) ®)
tatal samples

{error rate) =
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Table S Summary table
Fault Classification Time
Inception [ msec] Error Rate
Fault Type P

Time [52km| 13km [20.8km| 5.2km | 13km |20.8km
[msec] |(20%)| (50%) | (80%) | (20%) | (50%) | (80%)
SLG(a', 0°) 45.8 39 4.4 4.7 0% 0% 0%

SLG('a', 90°) 50.0 2.6 29 3.1 0% 0% 0%
SLG('b', 60°) 458 2.6 29 34 0% 0% 0%
SLG('b', 30°) 50.0 3.1 44 6.5 0% 1.41% | 2.66%

SLG('¢', 30°) 45.8 2.6 3.1 34 0% 0% 0%
SLG('¢', 60°) 50.0 29 3.4 3.7 0% 0% 0%
DLG('ab', 0°) 45.8 29 3.1 3.7 0% 0% 0%
DLG('ab’,90%)| 50.0 4.2 5.0 55 0.63% | 0.94% | 0.94%
DLG('bc', 60°)| 45.8 39 4.4 5.0 0% 0% 0%
DLG('bc', 30°)} 50.0 3.9 42 4.4 0.78% | 0.78% | 0.63%
DLG('ca', 30°)| 45.8 29 3.4 3.9 0.16% | 0.16% | 0.31%
DLG('ca', 60°)| 50.0 34 6.0 6.8 0% |2.34% | 2.81%

DLL(‘ab', 0°) 45.8 1.8 2.1 23 0% 0% 0%
DLL(ab", 90%| 50.0 1.6 1.8 2.6 0% 0% 0%
DLL('bc', 60°)| 45.8 1.0 1.3 1.6 0% 0% 0%

DLL(’bc', 30°) 50.0 29 34 3.7 0% 0% 0%
DLL(‘ca', 30°) 458 44 4.7 52 0% 0% 0%

DLL('ca', 60°) 50.0 1.3 1.6 1.8 0% 0% 0%
3¢G(0°) 45.8 1.6 1.8 1.8 031% | 0.16% | 0%
36G(90°) 50.0 0.5 0.8 08 0% 0% 0%

HIF('a', 0°) 45.8 5.0 5.2 57 0% 0% 0%
HIF(a', 90°) 50.0 2.1 2.3 2.6 0% 0% 0%

HIF(b', 60°) 45.8 23 2.6 29 0% 0% 0%
HIF('b', 30°) 50.0 6.5 6.8 7.0 0% 0% 0%
HIF(¢', 30°) 458 6.5 7.8 83 0% 0% 0%
HIF('¢', 60°) 50.0 37 3.9 4.2 0% 0% 0%

Normal - 0 0 0 0% 0% 0%
Average - 3.1 3.6 4.0 0.07% {0.21% | 0.27%
Maximum - 6.5 7.8 8.3 0.78% | 2.34% | 2.81%
Minimum - 0.5 0.8 0.8 0% 0% 0%

As shown in Table 5, the proposed algorithm can clas-
sify fault types under LIF and HIF in less than half a cycle,
with low error rate.

The output of the proposed algorithm carries two mean-
ings; one is detection of faults and the other is classifica-
tion of faults. In other words, if all of the outputs are not
zero, this means that a fault has occurred and also implicit
is the type of fault. The classification error signifies that
the output indicates an incorrect fault type.

The cause of classification error is based on the transient
phenomena. The fault current has been divided into two
components, a steady-state component and a transient
component. The steady-state component has the frequency
of the applied voltage, but is shifted in phase by the angle
and the constant angle of the system impedance, and with a
magnitude that is determined by the magnitude of the ap-
plied voltage and of the system impedance. The transient
component has two parts. One depends on the angle of the
voltage wave at which the fault is applied and the other
component is a function of the prefault current that is flow-
ing at the instant the fault is applied.

In the case of a multi-phase fault such as double line-to-
ground fault and line-to-line fault, the prefault current of

each phase has different magnitude and phase angle from
each other at the fault initiation instant. Accordingly, the
transient current of each phase is different from each other.
Such a difference of the transient current causes incorrect
classification results. Importantly, the latter still indicates
that a fault has occurred and due to the behavior of the sig-
nals with time, the classification error is only for a very
short period and hence the impact of the classification error
is not very significant. For example, as shown in Table 5, a
DLG fault (distance: 80%) has a maximum error of 2.81%
and this is equivalent to just 18 samples, i.e. about a quar-
ter cycle of the fundamental frequency. After this initial
period of error, the output of the algorithm starts to indicate
correct fault classification.

4. Conclusions

Any fault detection and classification technique should
be capable of performing satisfactorily under a wide vari-
ety of system and fault conditions, including contingencies
such as HIFs. Conventional techniques, however, have dif-
ficulties in dealing with such faults (they either fail to de-
tect the fault or fail to discern between double line-to-
ground and line-to-line faults) principally due to the limita-
tions imposed by the low levels of fault currents.

In this paper, a novel algorithm for fault detection and
classification of LIFs and HIFs has been developed using
ANFIS, which overcomes the aforementioned problem.
Equally important, this algorithm can detect and classify
fault type in a transmission line based on RMS value of
phase currents and zero sequence current in one single
algorithm.

The performance of the proposed algorithm is tested on
a typical 154 kV Korean transmission line system under
various fault conditions and the results presented clearly
demonstrate that the proposed algorithm can detect faults
and classify fault types accurately, in less than about half a
cycle. In addition, the proposed algorithm has a very low
error rate and excellent adaptability. The proposed algo-
rithm has been developed for real time implementation and
can be coded into existing digital relay hardware.
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