Browse > Article
http://dx.doi.org/10.12989/gae.2022.31.2.129

Metaheuristic models for the prediction of bearing capacity of pile foundation  

Kumar, Manish (Department of Civil Engineering, SRM Institute of Science and Technology (SRMIST), Deemed to be University,)
Biswas, Rahul (Department of Applied Mechanics, Visvesvaraya National Institute of Technology Nagpur)
Kumar, Divesh Ranjan (Department of Civil Engineering, National Institute of Technology Patna)
T., Pradeep (Department of Civil Engineering, National Institute of Technology Patna)
Samui, Pijush (Department of Civil Engineering, National Institute of Technology Patna)
Publication Information
Geomechanics and Engineering / v.31, no.2, 2022 , pp. 129-147 More about this Journal
Abstract
The properties of soil are naturally highly variable and thus, to ensure proper safety and reliability, we need to test a large number of samples across the length and depth. In pile foundations, conducting field tests are highly expensive and the traditional empirical relations too have been proven to be poor in performance. The study proposes a state-of-art Particle Swarm Optimization (PSO) hybridized Artificial Neural Network (ANN), Extreme Learning Machine (ELM) and Adaptive Neuro Fuzzy Inference System (ANFIS); and comparative analysis of metaheuristic models (ANN-PSO, ELM-PSO, ANFIS-PSO) for prediction of bearing capacity of pile foundation trained and tested on dataset of nearly 300 dynamic pile tests from the literature. A novel ensemble model of three hybrid models is constructed to combine and enhance the predictions of the individual models effectively. The authenticity of the dataset is confirmed using descriptive statistics, correlation matrix and sensitivity analysis. Ram weight and diameter of pile are found to be most influential input parameter. The comparative analysis reveals that ANFIS-PSO is the best performing model in testing phase (R2 = 0.85, RMSE = 0.01) while ELM-PSO performs best in training phase (R2 = 0.88, RMSE = 0.08); while the ensemble provided overall best performance based on the rank score. The performance of ANN-PSO is least satisfactory compared to the other two models. The findings were confirmed using Taylor diagram, error matrix and uncertainty analysis. Based on the results ELM-PSO and ANFIS-PSO is proposed to be used for the prediction of bearing capacity of piles and ensemble learning method of joining the outputs of individual models should be encouraged. The study possesses the potential to assist geotechnical engineers in the design phase of civil engineering projects.
Keywords
dynamic pile load tests; meta-heuristic optimization; pile foundations; rank analysis; reliability analysis;
Citations & Related Records
Times Cited By KSCI : 19  (Citation Analysis)
연도 인용수 순위
1 Xu, J., Zhou, L., Hu, K., Li, Y., Zhou, X. and Wang, S. (2022), "Influence of wet-dry cycles on uniaxial compression behavior of fissured loess disturbed by vibratory loads", J. Civil Eng. - KSCE, 26(5), 2139-2152. https://doi.org/10.1007/s12205-022-1593-0.   DOI
2 Moayedi, H., Raftari, M., Sharifi, A., Jusoh, W.A.W. and Rashid, A.S.A. (2020), "Optimization of ANFIS with GA and PSO estimating α ratio in driven piles", Eng. with Comput., 36(1), 227-238. https://doi.org/10.1007/S00366-018-00694-W/FIGURES/11.   DOI
3 Mohabbi, M., Ahmet, Y. and Ramazan, B. (2017), "Application of adaptive neuro-fuzzy technique and regression models to predict the compressive strength of geopolymer composites", Neural Comput. Appl., 28(6), 1453-61. https://doi.org/10.1007/s00521-015-2159-6.   DOI
4 Mohamed, F.M.O., Vanapalli, S.K. and Saatcioglu, M. (2013), "Generalized schmertmann equation for settlement estimation of shallow footings in saturated and unsaturated sands", Geomech. Eng., 5(4), 343-362. https://doi.org/10.12989/gae.2013.5.4.343.   DOI
5 Momeni, E., Dowlatshahi, M.B., Omidinasab, F., Maizir, H. and Armaghani, D.J. (2020), "Gaussian process regression technique to estimate the pile bearing capacity", Arabian J. Sci. Eng., https://doi.org/10.1007/s13369-020-04683-4.   DOI
6 Al-atroush, M.E., Hefny, A., Zaghloul, Y. and Sorour, T. (2020), "Behavior of a large diameter bored pile in drained and undrained conditions: Comparative analysis", Geosci., 10(7), 261. https://doi.org/10.3390/GEOSCIENCES10070261.   DOI
7 Armaghani, D.J., Harandizadeh, H., Momeni, E., Maizir, H. and Zhou, J. (2021), "An optimized system of GMDH-ANFIS predictive model by ICA for estimating pile bearing capacity", Artif. Intell. Rev., https://doi.org/10.1007/s10462-021-10065-5.   DOI
8 Armaghani, D.J., Mirzaei, F., Shariati, M., Trung, N.T., Shariati, M. and Trnavac, D. (2020), "Hybrid ann-based techniques in predicting cohesion of sandy-soil combined with fiber", Geomech. Eng., 20(3), 191-205. https://doi.org/10.12989/gae.2020.20.3.191.   DOI
9 Zhu, J. (2019), "Study on deformation law of foundation pit by multifractal detrended fluctuation analysis and extreme learning machine improved by particle swarm optimization", J. Yangtze River Scientif. Res. Inst., 36(3), 53. https://doi.org/10.11988/CKYYB.20170946.   DOI
10 Huang, H., Huang, M., Zhang, W. and Yang, S. (2021), "Experimental study of predamaged columns strengthened by HPFL and BSP under combined load cases", Struct. Infrastruct. Eng., 17(9), 1210-1227. https://doi.org/10.1080/15732479.2020.1801768.   DOI
11 Kalinli, A., Acar, M.C. and Gunduz, Z. (2011), "New approaches to determine the ultimate bearing capacity of shallow foundations based on artificial neural networks and ant colony optimization", Eng. Geol., 117(1-2), 29-38. https://doi.org/10.1016/J.ENGGEO.2010.10.002.   DOI
12 Kardani, N., Bardhan, A, and Samui, P., Zhou, M.N.A. and Armaghani, D.J. (2021), "A novel technique based on the improved firefly algorithm coupled with Extreme Learning Machine (ELM-IFF) for predicting the thermal conductivity of soil", Eng. with Comput., https://doi.org/10.1007/s00366-021-01329-3.   DOI
13 Kardani, N., Pijush Samui, P.T., Kim, D. and Zhou, A. (2021), "Smart phase behavior modeling of asphaltene precipitation using advanced computational frameworks: ENN, GMDH, and MPMR", Petroleum Sci. Technol., 39(19-20), 804-825. https://doi.org/10.1080/10916466.2021.1974882.   DOI
14 Wei, W., Xie, H., Mao, X. and Hu, H. (2019), "Prediction of bearing capacity of composite foundation of vibrating gravel pile based on RBF neural network", Proceedings of the IEEE 14th International Conference on Intelligent Systems and Knowledge Engineering, ISKE 2019. https://doi.org/10.1109/ISKE47853.2019.9170467.   DOI
15 Murlidhar, B.R, Sinha,R.K., Mohamad, E.T., Sonkar, R. and Khorami, M. (2020), "The effects of particle swarm optimisation and genetic algorithm on ANN results in predicting pile bearing capacity", Int. J. Hydromechatron., 3(1), 69. https://doi.org/10.1504/ijhm.2020.105484.   DOI
16 Nash, J.E. and Sutcliffe, J.V. (1970), "River flow forecasting through conceptual models Part I - A discussion of principles." J. Hydrology, 10(3), 282-290. https://doi.org/10.1016/0022-1694(70)90255-6.   DOI
17 Nayak, N.V., Kanhere, D.K. and Vaidya, R. (2000), "Static and high strain dynamic test co-relation studies on cast-in-situ concrete bored piles", Proceedings of the 25th Annual Members' Conference and 8th Int. Conf. and Exposition, Deep Foundation Institute.
18 Chen, F.X., Jin, Z., Wang, E.D., Wang, L., Jiang, Y., Guo, P., Gao, S. and He, X.Y. (2021), "Relationship model between surface strain of concrete and expansion force of reinforcement rust", Scientific Reports, 11(1). https://doi.org/10.1038/s41598-021-83376-w.   DOI
19 Fatehnia, M. and Amirinia, G. (2018), "A review of genetic programming and artificial neural network applications in pile foundations", Int. J. Geo-Eng., 9(1), 1-20. https://doi.org/10.1186/S40703-017-0067-6/TABLES/8.   DOI
20 Fellenius, B.H. (1999), Using the Pile Driving Analyzer.
21 Fishman, K.L., Richards, Jr. R. and Yao, D. (2003), "Inclination factors for seismic bearing capacity", J. Geotech. Geoenviron. Eng., 129(9), 861-865. https://doi.org/10.1061/(ASCE)1090-0241(2003)129:9(861).   DOI
22 Armaghani, D.J., Asteris,P.G., Fatemi, S.A., Hasanipanah, M., Tarinejad, R., Rashid, A.S.A. and Huynh, V.V. (2020), "On the use of neuro-swarm system to forecast the pile settlement", Appl. Sci., 10(6), 1904. https://doi.org/10.3390/APP10061904.   DOI
23 Kennedy, J. and Eberhart, R. (1995), "Particle swarm optimization", Proceedings of the IEEE International Conference on Neural Networks - Conference.
24 Kiefa, M.A.A. (1998), "General regression neural networks for driven piles in cohesionless soils", J. Geotech. Geoenviron. Eng., 124(12), 11771185. https://doi.org/10.1061/(ASCE)1090-0241(1998)124:12(1177).   DOI
25 Kulhawy, F.H. (1993), "On the evaluation of static soil properties. in stability and performance of slopes and embankments II",, ASCE, 95-115.
26 Guo, Y., Yang, Y., Kong, Z. and He, J. (2022), "Development of similar materials for liquid-solid coupling and its application in water outburst and mud outburst model test of deep tunnel", Geofluids, 2022, 1-12. https://doi.org/10.1155/2022/8784398.   DOI
27 Gabrielaitis, L., Papinigis, V. and Zarzoju, G. (2013), "Estimation of settlements of bored piles foundation", Struct. Techniques, 287-293.
28 Gaitonde, V.N. and Karnik, S.R. (2012), "Minimizing burr size in drilling using Artificial Neural Network (ANN)-Particle Swarm Optimization (PSO) approach", J. Intell. Manufact., 23(5), 1783-1793. https://doi.org/10.1007/s10845-010-0481-5.   DOI
29 Ghani, S., Kumari, S. and Bardhan, A. (2021), "A novel liquefaction study for fine-grained soil using PCA-based hybrid soft computing models." Sadhana - Academy Proceedings in Engineering Sciences 46(3), 1-17. https://doi.org/10.1007/S12046-021-01640-1/TABLES/7.   DOI
30 Liu, L.L., Yang, C. and Wang, X.M. (2021), "Landslide susceptibility assessment using feature selection based machine learning models", Geomech. Eng., 25(1), 1-16. https://doi.org/10.12989/gae.2021.25.1.001.   DOI
31 Park, D. and Rilett, L. (1999), "Forecasting freeway link travel times with a multilayer feedforward neural network", Comput. Aid. Civ. Infrastruct. Eng., 14(5), 357-367.   DOI
32 Park, H., Lee, S.R. and Jee, S.H. (2010), "Bearing capacity of surface footing on soft clay underlying stiff nonhomogeneous desiccated crust", Int. J. Offshore Polar Eng., 20(3).
33 Pezeshki, Z. and Mazinani, S.M. (2019), "Comparison of artificial neural networks, fuzzy logic and neuro fuzzy for predicting optimization of building thermal consumption: A survey", Artif. Intell. Rev., 52(1), 495-525. https://doi.org/10.1007/S10462-018-9630-6/FIGURES/10.   DOI
34 Biswas, R., Bardhan, A., Samui, P., Rai, B., Nayak, S. and Armaghani, D.J. (2021), "Efficient soft computing techniques for the prediction of compressive strength of geopolymer concrete", Comput. Concrete, 28(2), 221-232. https://doi.org/10.12989/cac.2021.28.2.221.   DOI
35 Bai, Y., Nardi, D.C., Zhou, X., Picon, R.A. and Florez-Lopez, J. (2021), "A new comprehensive model of damage for flexural subassemblies prone to fatigue", Comput. Struct., 256. https://doi.org/10.1016/j.compstruc.2021.106639.   DOI
36 Bardhan, A., Kardani, N., GuhaRay, A., Burman, A., Samui, P. and Zhang, Y. (2021), "Hybrid ensemble soft computing approach for predicting penetration rate of tunnel boring machine in a rock environment", J. Rock Mech. Geotech. Eng., 13(6), 1398-1412. https://doi.org/10.1016/j.jrmge.2021.06.015.   DOI
37 Bharti, J.P., Mishra, P., Moorthy, U., Sathishkumar, V. E., Cho, Y. and Samui, P. (2021), "Slope stability analysis using Rf, Gbm, Cart, Bt and Xgboost", Geotech. Geol. Eng., 39(5), 3741-3752. https://doi.org/10.1007/S10706-021-01721-2/FIGURES/6.   DOI
38 Biswas, R., Samui, P. and Rai, B. (2019), "Determination of compressive strength using relevance vector machine and emotional neural network", Asian J. Civil Eng., 20(8), 1109-1018. https://doi.org/10.1007/s42107-019-00171-9.   DOI
39 Bradshaw, A.S. and Baxter, C.D.P. (2006), Design and Construction of Driven Pile Foundations - Lessons Learned on the Central Artery / Tunnel Project.
40 Pradeep, T., Bardhan, A., Burman, A. and Samui, P. (2021), "Rock strain prediction using deep neural network and hybrid models of ANFIS and meta-heuristic optimization algorithms", Infrastructures, 6(9), 129.   DOI
41 Pradeep, T., Bardhan, A. and Samui, P. (2022), "Prediction of rock strain using soft computing framework", Innov. Infrastruct. Solutions, 7(1), 37. https://doi.org/10.1007/s41062-021-00631-9.   DOI
42 Charlie, W.A., Allard, D.J. and Doehring, D.O. (2009), "Pile settlement and uplift in liquefying sand deposit", Geotech. Test. J., 32(2), 147-156. https://doi.org/10.1520/GTJ101636.   DOI
43 Zhang, W. and Phoon, K.K. (2022), "Editorial for advances and applications of deep learning and soft computing in geotechnical underground engineering", J. Rock Mech. Geotech. Eng..
44 Rausche, F., Goble, G.G. and Likins, Jr. G.E. (2004), "Dynamic determination of pile capacity", Current Practices and Future Trends in Deep Foundations. Reston, VA: American Society of Civil Engineers.
45 Ray, R., Kumar, D., Samui, P., Roy, L.B., Goh, A.T.C. and Zhang, W. (2021), "Application of soft computing techniques for shallow foundation reliability in geotechnical engineering", Geosci. Frontiers, 12(1), 375-383. https://doi.org/10.1016/j.gsf.2020.05.003.   DOI
46 Wu, C., Hong, L., Wang,L., Zhang, R., Pijush, S. and Zhang, W. (2022), "Prediction of wall deflection induced by braced excavation in spatially variable soils via convolutional neural network", Gondwana Res., https://doi.org/10.1016/j.gr.2022.06.011.   DOI
47 Chai, T. and Draxler, R.R. (2014), "Root Mean Square Error (RMSE) or Mean Absolute Error (MAE)? -Arguments against avoiding RMSE in the literature", Geosci. Model Development, 7(3), 1247-1250. https://doi.org/10.5194/gmd-7-1247-2014.   DOI
48 Zhou, Xuhong, Yongtao Bai, Deborah C. Nardi, Yuqian Wang, Yuhang Wang, Zhanfang Liu, Ricardo A. Picon, and Julio Florez-Lopez. (2022), "Damage evolution modeling for steel structures subjected to combined high cycle fatigue and high-intensity dynamic loadings", Int. J. Struct. Stab. Dyn., 22(3). https://doi.org/10.1142/S0219455422400120.   DOI
49 Yu, C., Koopialipoor, M., Murlidhar, B.R., Mohammed, A.S., Armaghani, D.J., Mohamad, E.T. and Wang, Z. (2021), "Optimal ELM-harris hawks optimization and ELM- grasshopper optimization models to forecast peak particle velocity resulting from mine blasting", Nat. Resour. Res., 30(3), 2647-2662. https://doi.org/10.1007/S11053-021-09826-4/FIGURES/9.   DOI
50 Yuan, J., Lei, D., Shan, Y., Tong, H., Fang, X. and Zhao, J. (2022), "Direct shear creep characteristics of sand treated with microbial-Induced calcite precipitation", Int. J. Civil Eng., 20(7), 763-777. https://doi.org/10.1007/s40999-021-00696-8.   DOI
51 Zhang, W., Gu, X., Tang, L., Yin, Y., Liu, D. and Zhang, Y. (2022), "Application of machine learning, deep learning and optimization algorithms in geoengineering and geoscience: Comprehensive review and future challenge", Gondwana Research.
52 Zhang, W., Liu, X. and Huang, Y. (2022), "Reliability-based analysis of the flexural strength of concrete beams reinforced with hybrid BFRP and steel rebars", Archiv. Civ. Mech. Eng., https://doi.org/10.1007/s43452-022-00493-7.   DOI
53 Zeng, J., Asteris, P.G., Mamou, A.P., Mohammed, A.S., Golias, E.A., Armaghani, D.J., Faizi, K. and Hasanipanah, M. (2021), "The effectiveness of ensemble-neural network techniques to predict peak uplift resistance of buried pipes in reinforced sand", Appl. Sci., 11(3), 908. https://doi.org/10.3390/APP11030908.   DOI
54 Zeng, J., Roy, B., Kumar, D., Mohammed, A.S., Armaghani, D.J., Zhou, J. and Mohamad, E.T. (2021), "Proposing several hybrid PSO-extreme learning machine techniques to predict TBM performance", Eng. with Comput., 1, 1-17. https://doi.org/10.1007/S00366-020-01225-2/FIGURES/11.   DOI
55 Zhang, C., Ali, A. and Sun, L. (2021), "Investigation on low-cost friction-based isolation systems for masonry building structures: Experimental and numerical studies", Eng. Struct., 243. https://doi.org/10.1016/j.engstruct.2021.112645.   DOI
56 Kumar, M. and Samui, P. (2019), "Reliability analysis of pile foundation using ELM and MARS", Geotech. Geol. Eng., 37(4). https://doi.org/10.1007/s10706-018-00777-x.   DOI
57 Kumar, M., Samui, P., Kumar, D. and Zhang. W. (2021), "Reliability analysis of settlement of pile group", Innov. Infrastruct. Solutions, 6(1). https://doi.org/10.1007/s41062-020-00382-z.   DOI
58 Li, W., Li, B., Guo, H., Fang, Y., Qiao, F. and Zhou, S. (2020), "The ECG signal classification based on ensemble learning of PSO-ELM algorithm", Neural Network World, 30(4), 265-279. https://doi.org/10.14311/NNW.2020.30.018.   DOI
59 Liu, L., Moayedi, H., Rashid, A.S.A., Rahman, S.S.A. and Nguyen, H. (2020), "Optimizing an ANN model with Genetic Algorithm (GA) predicting load-settlement behaviours of Eco-Friendly Raft-Pile Foundation (ERP) system", Eng. with Comput., https://doi.org/10.1007/s00366-019-00767-4.   DOI
60 Lin, Z., Wang, H. and Li, S. (2022), "Pavement anomaly detection based on transformer and self-supervised learning", Automat. Constr., 143, 104544. https://doi.org/10.1016/j.autcon.2022.104544.   DOI
61 Long, M. (2007), "Comparing dynamic and static test results of bored piles", Proceedings of the Institution of Civil Engineers: Geotechnical Engineering, 160(1), 43-49. https://doi.org/10.1680/geng.2007.160.1.43.   DOI
62 Moayedi, H. and Rezaei, A. (2021), "The feasibility of PSO- ANFIS in estimating bearing capacity of strip foundations rested on cohesionless slope", Neural Comput. Appl., 33(9), 4165-4177. https://doi.org/10.1007/s00521-020-05231-9.   DOI
63 Sakr, M. (2013), "Comparison between high strain dynamic and static load tests of helical piles in cohesive soils", Soil Dyn. Earthq. Eng., 54, 20-30. https://doi.org/10.1016/j.soildyn.2013.07.010.   DOI
64 Rausche, F., Goble, G.G. and Likins, G.E. (1985), "Dynamic determination of pile capacity", J. Geotech. Eng., 111(3), 367-383. https://doi.org/10.1061/(ASCE)0733-9410(1985)111:3(367).   DOI
65 Rybak, J. and Krol, M. (2018), "Limitations and risk related to static capacity testing of piles-'Unfortunate Case', studies", P. 02006 in MATEC Web of Conferences. Vol. 146, edited by I. Juhasova Senitkova. EDP Sciences.
66 Atsalakis, G.S., Atsalaki, I.G. and Zopounidis, C. (2018), "Forecasting the success of a new tourism service by a neuro-fuzzy technique", Eur. J. Operation. Res., 268(2), 716-727. https://doi.org/10.1016/J.EJOR.2018.01.044.   DOI
67 Chen, F.X., Zhong, Y.C., Gao, X.Y., Jin, Z.Q., Wang, E.D., Zhu, F.P., Shao, X.X. and He, X.Y. (2021), "Non-uniform model of relationship between surface strain and rust expansion force of reinforced concrete", Scientific Reports, 11(1). https://doi.org/10.1038/s41598-021-88146-2.   DOI
68 Basarkar, S.S. (2011), "High strain dynamic pile testing practices in India-favorable situations and correlation studies", in Proceedings of Indian Geotechnical Conference Kochi (Paper No. Q-303).
69 Biswas, R., Rai, B., Samui, P. and Roy, S.S. (2020), "Estimating Concrete Compressive Strength Using MARS, LSSVM and GP", Eng. J., 24(2), 41-52. https://doi.org/10.4186/ej.2020.24.2.41.   DOI
70 Chaallal, O., Arockiasamy, M. and Godat, A. (2015), "Field test performance of buried flexible pipes under live truck loads", J. Perform. Constr. Fac., 29(5), 04014124. https://doi.org/10.1061/(ASCE)CF.1943-5509.0000624.   DOI
71 Shan, Y., Zhao, J., Tong, H., Yuan, J., Lei, D. and Li, Y. (2022). "Effects of activated carbon on liquefaction resistance of calcareous sand treated with microbially induced calcium carbonate precipitation", Soil Dyn. Earthq. Eng., 161. https://doi.org/10.1016/j.soildyn.2022.107419.   DOI
72 Shi, L., Xiao, X., Wang, X., Liang, H. and Wang. D. (2022), "Mesostructural characteristics and evaluation of asphalt mixture contact chain complex networks", Constr. Build. Mater., 340. https://doi.org/10.1016/j.conbuildmat.2022.127753.   DOI
73 Sundaram, R. and Gupta, S. (2016), "Back-analysis of pile load test results-a case study", ISRM India J.-Half Yearly Tech. J. Indian National Group of ISRM, 5(2), 30-35.
74 Sieffert, J.G. and Bay-Gress, C.H. (2000), "Comparison of european bearing capacity calculation methods for shallow foundations", Proceedings of the Institution of Civil Engineers - Geotechnical Engineering, 143(2), 65-74. https://doi.org/10.1680/geng.2000.143.2.65.   DOI
75 Smith, E.A.L. (2002), "Pile-driving analysis by the wave equation", in Geotechnical Special Publication.
76 Srinivasulu, S. and Jain, A. (2006), "A comparative analysis of training methods for artificial neural network rainfall-runoff models", Appl. Soft Comput., 6(3), 295-306. doi: 10.1016/j.asoc.2005.02.002.   DOI
77 Taylor, K.E. (2001), "Summarizing multiple aspects of model performance in a single diagram", J. Geophys. Res. Atmosph., 106(7), 7183-7192. https://doi.org/10.1029/2000JD900719.   DOI
78 Terzaghi, K. (1929), "Effect of minor geologic details on the safety of dams", Amer. Inst. Min. and Met. Engrs. Tech. Publ., 215, 31-44.
79 Wang, C., Zhou, S., Wang, B., P. Guo-Geomechanics and, and Undefined 2016. (2016), "Settlement behavior and controlling effectiveness of two types of rigid pile structure embankments in high-speed railways", Geomech. Eng., 11, 847-865.   DOI
80 Tu, J.V. (1996), "Advantages and disadvantages of using artificial neural networks versus logistic regression for predicting medical outcomes", J. Clinical Epidemiol., 49(11), 1225-1231. https://doi.org/10.1016/S0895-4356(96)00002-9.   DOI
81 Wang, X., Yang, Y., Yang, R. and Liu., P. (2022), "Experimental analysis of bearing capacity of basalt fiber reinforced concrete short columns under axial compression", Coatings, 12(5). https://doi.org/10.3390/coatings12050654.   DOI
82 Wei, J., Xie, Z., Zhang, W., Luo, X., Yang, Y. and Chen, B. (2021), "Experimental study on circular steel tube-confined reinforced UHPC columns under axial loading", Eng. Struct., 230. https://doi.org/10.1016/j.engstruct.2020.111599.   DOI
83 Wu, Z., Xu, J., Chen, H., Shao, L., Zhou, X. and Wang, S. (2022), "Shear strength and mesoscopic characteristics of basalt fiber- reinforced loess after dry-wet cycles", J. Mater. Civil Eng., 34(6). https://doi.org/10.1061/(asce)mt.1943-5533.0004225.   DOI
84 Xie, W., Li, X., Jian, W., Yang, Y., Liu, H., Robledo, L.F. and Nie, W. (2021), "A novel hybrid method for landslide susceptibility mapping-based geodetector and machine learning cluster: A case of Xiaojin County, China", ISPRS International J. Geo-Inform., 10(2), https://doi.org/10.3390/ijgi10020093.   DOI
85 Xie, W., Nie, W., Saffari, P., Robledo, L.F., Descote, P.Y. and Jian, W. (2021), "Landslide hazard assessment based on bayesian optimization-support vector machine in Nanping City, China", Nat. Hazards, 109(1), 931-948. https://doi.org/10.1007/s11069-021-04862-y.   DOI